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Abstract

The general adversary bound is a semi-definite program (SDP) that lower-bounds the quan-
tum query complexity of a function. We turn this lower bound into an upper bound, by giving a
quantum walk algorithm based on the dual SDP that has query complexity at most the general
adversary bound, up to a logarithmic factor.

In more detail, the proof has two steps, each based on “span programs,” a certain linear-
algebraic model of computation. First, we give an SDP that outputs for any boolean function a
span program computing it that has optimal “witness size.” The optimal witness size is shown
to coincide with the general adversary lower bound. Second, we give a quantum algorithm for
evaluating span programs with only a logarithmic query overhead on the witness size.

The first result is motivated by a quantum algorithm for evaluating composed span programs.
The algorithm is known to be optimal for evaluating a large class of formulas. The allowed gates
include all constant-size functions for which there is an optimal span program. So far, good
span programs have been found in an ad hoc manner, and the SDP automates this procedure.
Surprisingly, the SDP’s value equals the general adversary bound. A corollary is an optimal
quantum algorithm for evaluating “balanced” formulas over any finite boolean gate set.

The second result broadens span programs’ applicability beyond the formula-evaluation prob-
lem. We extend the analysis of the quantum algorithm for evaluating span programs. The
previous analysis shows that a corresponding bipartite graph has a large spectral gap, but only
works when applied to the composition of constant-size span programs. We show generally that
properties of eigenvalue-zero eigenvectors in fact imply an “effective” spectral gap around zero.

A strong universality result for span programs follows. A good quantum query algorithm for
a problem implies a good span program, and vice versa. Although nearly tight, this equivalence
is nontrivial. Span programs are a promising model for developing more quantum algorithms.
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1 Introduction

Quantum algorithms for evaluating formulas have developed rapidly since the breakthrough AND-
OR formula-evaluation algorithm [FGGO07]. The set of allowed gates in the formula has increased
from just AND and OR gates to include all boolean functions on up to three bits, and many
four-bit functions—with certain technical balance conditions. Operationally, the new algorithms
can be interpreted as evaluating “span programs,” a certain linear-algebraic computational model
(Def. 2.1). Discovering an optimal span program for a function immediately allows it to be added
to the gate set [RS08].
This paper is motivated by three main puzzles:

1. Can the gate set allowed in the formula-evaluation algorithm be extended further? Given
that the search for optimal span programs has been entirely ad hoc, yet still quite successful,
it seems that the answer must be yes. How far can it be extended, though?

2. The adversary bounds are lower bounds on the number of queries to the input that a quan-
tum algorithm needs to evaluate a function [Amb02, SS06, HLS07]. There are two different
adversary bounds, Adv < Adv*® (Def. 2.4), but the power of the latter bound is not fully
understood. What is the relationship between span program complexity, or “witness size”
(Def. 2.2), and the adversary lower bounds on quantum query complexity? There appears to
be a close connection. For example, so far all known optimal span programs are for functions f
with Adv(f) = Adv*E(f).

3. Aside from their applications to formula evaluation, can span programs be used to derive
other quantum algorithms?

Our first result answers the first two questions. Unexpectedly, we find that for any boolean func-
tion f, the optimal span program has witness size equal to the general adversary bound Advi( f).
This result is surprising because of its broad scope. It allows us to optimally evaluate formulas over
any finite gate set, quantumly. Classically, optimal formula-evaluation algorithms are known only
for a limited class of formulas using AND and OR gates, and a few other special cases.

This result suggests a new technique for developing quantum algorithms for other problems.
Based on the adversary lower bound, one can construct a span program, and hopefully turn this
into an algorithm, i.e., an upper bound. Unfortunately, it has not been known how to evaluate
general span programs. The second result of this paper is a quantum algorithm for evaluating span
programs, with only a logarithmic query overhead on the witness size. The main technical difficulty
is showing that a corresponding bipartite graph has a large spectral gap. We show that properties
of eigenvalue-zero eigenvectors in fact imply an “effective” spectral gap around zero.

In combination, the two results imply that the general adversary bound, Adv™, is tight up to a
logarithmic factor for every boolean function. This is surprising because Adv™ is closely connected
to the nonnegative-weight adversary bound Adv, which has strong known limitations [Zha05, SS06,
HLSO?]. It implies a significantly simpler semi-definite program for quantum query complexity
than has been known [BSS03]. The results also imply that quantum computers, measured by query
complexity, and span programs, measured by witness size, are equivalent computational models,
up to a logarithmic factor.

Some further background material is needed to place the results in context.



Quantum algorithms for evaluating formulas

Farhi, Goldstone and Gutmann in 2007 gave a nearly optimal quantum algorithm for evaluating
balanced binary AND-OR formulas [FGG07, CCJY07]. This was extended by Ambainis et al. to a
nearly optimal quantum algorithm for evaluating all AND-OR formulas, and an optimal quantum
algorithm for evaluating “approximately balanced” AND-OR formulas [ACRT07].

Reichardt and Spalek gave an optimal quantum algorithm for evaluating “adversary-balanced”
formulas over a considerably extended gate set [RS08], including in particular:

e All functions {0,1}" — {0,1} for n < 3, such as AND, OR, PARITY and MAJs.
e 69 of the 92 inequivalent functions f : {0,1}* — {0,1} with Adv(f) = Adv=(f).

They derived this result by generalizing the previous approaches to consider span programs, a
computational model introduced by Karchmer and Wigderson [KW93]. They then gave a quantum
algorithm for evaluating certain concatenated span programs, with a query complexity upper-
bounded by the span program witness size. Thus in fact the allowed gate set includes all functions
f:{0,1}" — {0,1}, with n = O(1), for which we have a span program P computing f and with
witness size wsize(P) = Adv®(f). A special case of [RS08, Thm. 4.7] is:

Theorem 1.1 ([RS08]). Fiz a function f : {0,1}" — {0,1}. For k € N, define f* : {0,1}"" —
{0,1} as follows: f' = f and f*(z) = X 1(f(z1,- o v2n), oo f(@pb_pats - Tpr)) for k > 1.
If span program P computes f, then the bounded-error quantum query complexity of f*, Q(f¥),
satisfies
Q(f*) = O(wsize(P)) . (1.1)
[RS08] followed an ad hoc approach to finding optimal span programs for various functions.
Although successful so far, continuing this method seems daunting for a few reasons:

e For most functions f, probably Adv®(f) > Adv(f). Indeed, there are 222 four-bit boolean
functions, up to the natural equivalences, and for only 92 of them does Adv® = Adv hold.
For no function with a gap has a span program matching Advi( f) been found. This suggests
that perhaps span programs can only work well for the special cases when AdvT = Adv.

e Moreover, for all the functions for which we know an optimal span program, it turns out
that an optimal span program can be built just by using AND and OR span programs with
optimized weights. (This fact has not been appreciated.) On the other hand, there is no
reason to think that optimal span programs will in general have such a limited form.

e Finally, it can be difficult to prove a span program’s optimality. For several functions, we
have found span programs whose witness sizes match Adv numerically, but we lack a proof.

In any case, the natural next step is to try to automate the search for good span programs.
A main difficulty is that there is considerable freedom in the span program definition, e.g., span
programs are naturally continuous, not discrete. The search space needs to be narrowed down.

We show that it suffices to consider span programs written in so-called “canonical” form. This
form was introduced by [KW93], but its significance for developing quantum algorithms was not
at first appreciated. We then find a semi-definite program (SDP) for varying over span programs
written in canonical form, optimizing the witness size. This automates the search.

Remarkably, the SDP has a value that corresponds exactly to the general adversary bound
Adv™, in a new formulation. Thus we characterize optimal span program witness size:



Theorem 1.2. For any function f:{0,1}" — {0,1},

inf wsize(P) = AdvE(f) (1.2)

where the infimum is over span programs P computing f. Moreover, this infimum is achieved.

This result greatly extends the gate set over which the formula-evaluation algorithm of [RSOS]
works optimally. In fact, it allows the algorithm to run on formulas with any finite gate set. A
factor is lost that depends on the gates, but for a finite gate set, this will be a constant. As another
corollary, Thm. 1.2 also settles the question of how the general adversary bound behaves under
function composition, and it implies a new upper bound on the sign-degree of boolean functions.

Quantum algorithm for evaluating span programs

Now that we know there are span programs with witness size matching the general adversary
bound, it is of more interest to extend the formula-evaluation algorithm to evaluate arbitrary span
programs. Unfortunately, though, a key theorem from [RS08] does not hold general span programs.

The [RSOS] algorithm to evaluate a formula ¢ works by plugging together optimal span programs
for the individual gates in ¢ to construct a composed span program P that computes ¢. Then a
family of related graphs Gp(z), one for each input x, is constructed. For an input x, the algorithm
starts at a particular “output vertex” of the graph, and runs a quantum walk for about 1/wsize(P)
steps. The algorithm’s analysis has two parts. First, for completeness, it is shown that when
o(z) = 1, there exists a normalized, eigenvalue-zero eigenvector of the weighted adjacency matrix
AGp(x) With large overlap on the output vertex. Thus there is a large stationary component to the
walk, which is the algorithm detects. Second, for soundness, it is shown that if p(z) = 0, then
Agp () has an Q(1/wsize(P)) spectral gap around zero for eigenvectors supported on the output
vertex. This spectral gap determines the algorithm’s query complexity.

The completeness step of the proof comes from relating the definition of Gp(z) to the wit-
ness size definition. Eigenvalue-zero eigenvectors correspond exactly to span program “witnesses,”
with the squared support on the output vertex corresponding to the witness size. This argument
straightforwardly extends to arbitrary span programs.

For soundness, the proof essentially inverts the matrix Ag ;) — p1 gate by gate, span program
by span program, starting at the inputs and working recursively toward the output vertex. In this
way, it roughly computes the Taylor series about p = 0 of the eigenvalue-p eigenvectors in order
eventually to find a contradiction for |p| small. One would not expect this method to extend to
arbitrary span programs, because it loses a constant factor that depends badly on the individual
span programs used for each gate. Indeed, it fails in general. Span programs can be constructed
for which the associated graphs simply do not have an Q(1/wsize(P)) spectral gap. (For example,
take a large span program and add an AND gate to the top whose other input is 0. The composed
span program computes the constant 0 function and has constant witness size, but the spectral
gaps of the associated large graphs need not be §2(1).)

It has not been fully understood why the [RS08] analysis works so well when applied to balanced
compositions of constant-size optimal span programs. In particular, the correspondence between
graphs and span programs by definition relates the witness size to properties of eigenvalue-zero
eigenvectors. Why does the same witness size quantity also appear in the spectral gap?

We show that this is not a coincidence, that in general an eigenvalue-zero eigenvector of a
bipartite graph implies an “effective” spectral gap for a perturbed graph. Somewhat more precisely,



the inference is that the total squared overlap on the output vertex of small-eigenvalue eigenvectors
is small. This argument leads to a substantially more general small-eigenvalue spectral analysis.
It also implies simpler proofs of Thm. 1.1 as well as of the AND-OR formula-evaluation result
in [ACR™07].

This small-eigenvalue analysis is the key step that allows us to evaluate span programs on a
quantum computer. Besides showing an effective spectral gap, though, we would also need to bound
|Ag,|| in order to generalize [RS08]. However, recent work by Cleve et al. shows that this norm
does not matter if we are willing to concede a logarithmic factor in the query complexity [CGM™09].
We thus obtain:

Theorem 1.3. Let P be a span program computing f : {0,1}" — {0,1}. Then

log wsize(P)
log log wsize(P) )

Q(f) = O(wsize(P) (1.3)

We can now prove the main result of this paper, that for any boolean function f the general
adversary bound on the quantum query complexity is tight up to a logarithmic factor:

Theorem 1.4. For any function f :{0,1}" — {0, 1}, the quantum query complexity of f satisfies

log Adv®(f) )
loglog Adv®(f)/)

Q) = QAWE() and Q) —0<Advi(f) (1.4)

Proof. The lower bound is due to [HLS07] (see Thm. 2.5). For the upper bound, use the SDP from
Thm. 1.2, to construct a span program P computing f, with wsize(P) = Advi( f). Then apply
Thm. 1.3 to obtain a bounded-error quantum query algorithm that evaluates f. ]

Thus the Adv* semi-definite program is in fact an SDP for quantum query complexity, up to a
logarithmic factor. Previously, Barnum et al. have already given an SDP for quantum query com-
plexity [BSS03], and have shown that the nonnegative-weight adversary bound Adv can be derived
by strengthening it, but their SDP is quite different. In particular, the Adv™ SDP is “greedy,” in the
sense that it considers only how much information can be learned using a single query; see Def. 2.4
below. The [BSS03] SDP, on the other hand, has separate terms for every query. It is surprising
that a small modification to Adv can not only break the certicate complexity and property testing
barriers [HLSO?], but in fact be nearly optimal always. For example, for the Element Distinctness
problem with the input in [n]” specified in binary, Adv(f) = O(y/nlogn) [SS06] but Q(f) = Q(n?/3)
by the polynomial method [AS04, Amb05]. Thm. 1.4 implies that Adv*(f) = Q(n?/3/logn).

2 Definitions

Let B = {0,1}. For a natural number n, let [n] = {1,2,...,n}. For a finite set X, let C* be the
inner product space CX! with orthonormal basis {|z) : z € X}.
2.1 Span programs

A span program P is a certain linear-algebraic way of specifying a boolean function fp [KW93].
The complexity measure we use to characterize span programs is the witness size [RS08].



Definition 2.1 ([KW93]). A span program P on n € N bits consists of a “target” vector |t) in a
finite-dimensional inner-product space V' over C, together with “input” vectors |v;) € V' fori € I.
Here the index set I is a disjoint union I = Uje[n],beB Lip.

P “computes” a function fp: B™ — B, defined by

_ v if[t) € Span({[vi) : i € Ujepy) Liw, })
frlw) = {0 otherwise ’ 21)

Definition 2.2 ([RS08]). Consider a span program P. Let A =", ; |v;))i| € L(C!, V). For each
input x € B", let I(x) = Ujepy i, and () =3¢ () 11Xi] € £(Ch), and

o If fp(x) = 1, then |t) € Range(All(z)), so there is a witness |w) € C! satisfying All(z)|w) =
|t). Let wsize(P,x) be the minimum squared length of any such witness:

wsize(P,z) = min w)|? . 2.2
()= omin )] (22)

e If fp(x) = 0, then |t) ¢ Range(All(z)). Therefore a witness |w') € V exists satisfying
(tjw'y =1 and T(x)AT|w') = 0. Let

wsize(P, z) = | >n<n‘in> | AT[w)]|? . (2.3)
w’y: (tlw')=1
I(z) AT |w')=0

Let the witness size of P be wsize(P) = max,epn wsize(P, x).
The ease with which span programs compose is one of their nicest features:

Theorem 2.3. Consider boolean functions f and, for j € [n], f;. Let g(z) = f(f1(z), f2(z), ..., fa(z)).
Let span programs Pj compute fp, = fj, and P compute fp = f. Then there exists a span program
Q computing fq = g, with wsize(Q) < wsize(P) max ¢, wsize(F;).

2.2 Adversary lower bounds

There are essentially two techniques for lower-bounding quantum query complexity, the polyno-
mial method, due to Beals et al. [BBCT01], and the adversary bounds, first introduced by Ambai-
nis [Amb02]. The two methods are incomparable. The adversary bound Adv, from [SS06, HNS02,
BS04, Amb06, Zha05, BSS03, LM04], is subject to a certificate complexity barrier: for f a total
boolean function, Adv(f) < \/Co(f)Ci(f), where Cy(f) is the certificate complexity of the inputs
x with f(z) = b [Zha05, SS06]. The polynomial method can surpass this barrier, for example for
the Element Distinctness problem mentioned earlier. Adv also suffers a “property testing barrier”
on partial functions. On the other hand, the polynomial method can also be loose. Ambainis gave
a total boolean function f* on n = 4* bits for which the polynomial method cannot give a bound
larger than 2%, but for which Adv(f*) = 2.5 [Amb06].

In 2007, though, Hgyer et al. discovered a strict generalization Adv® of Adv [HLS07]. For
example, for Ambainis’s function, Adv*(f*) > 2.51%. Adv™ also breaks the certificate complexity
and property testing barriers. No similar limits on its power have been found.

Let us now define the two adversary bounds. On account of how their definitions differ, we call
Adv the “nonnegative-weight” adversary bound, and Adv™ the “general” adversary bound.



Definition 2.4. Let f : B™ — B. An adversary matriz for f is a 2™ x 2™ real, symmetric matriz
T that, for xz,y € B™ with f(x) = f(y), has a zero (x,y) entry, (x|Cy) = 0. The general adversary
bound for f is

AdvE(f) = max 1| (2.4)

adversary matrices I':
Vieln], [ToA;|I<1

where I' o Aj denotes the entry-wise matriz product between I' and Aj = lzXy|, and

x,y€EB™:x; Ay,
the norm is the operator norm. The nonnegative-weight adversary bound, Adv(f), is the same,
except with the entries of T' required to be nonnegative; thus Adv(f) < Adv*(f).

Theorem 2.5 ([HLS07]). For any function f : B® — B, the bounded-error quantum query com-
plexity of f satisfies Q(f) = Q(AdvE(f)).

Theorem 2.6 ([RS08]). For any span program P, wsize(P) > Adv®(fp).

3 Canonical span programs

In looking for an optimal span program, we prove that it suffices to search over span programs with
a very restricted form, so-called canonical span programs. This reduction will be essential not only
for the SDP for span programs, but also for the quantum algorithm for evaluating span programs.

Definition 3.1 ([KW93]). A span program P on n bits is canonical if V = CI where Fy = {x €
B": fp(z) = 0}, the target vector is [t) = > cp |2), and for all x € Fy and i € I(z), (z[v;) = 0.

Theorem 3.2. A span program P can be converted to a canonical span program P that computes

Ip = fp, with wsize(P) < wsize(P). For all x with fs(x) =0, |x) itself is an optimal witness.

Proof. We use the conversion procedure from [KW93, Thm. 6], and analyze the witness size. [

4 Span program witness size and the general adversary bound

We now formulate a semi-definite program for the optimal span program computing a function f.
Remarkably, this SDP turns out to be the dual of the SDP in Eq. (2.4) for Adv®(f).

Proof of Thm. 1.2. Lemma 4.1 constructs an SDP whose value is the optimal witness size of a span
program computing f. Thm. 4.2 takes the dual of this SDP to show that it evaluates to Adv®(f).

Lemma 4.1. For a function f: B™ — B, let F, = {x : f(z) = b} for b€ B. Then,

. _ B _ e
pipL wsize(P) = 75212, max Z lozs) 17 - (4.1)
{lvej)eR™:x€B™ j€[n]} : J€ln]

V(ﬁ,y)GFgXFl, Z]zj#yj <UZJ|vyJ>:1

Proof. We prove the < direction here. Given a solution {|vy;)}, let P be a span program with target
[t) = ser |7) and I, = [m] for all j € [n], b € B. These sets are not disjoint, so for k € I;;, use
|vjpk) to denote the corresponding input vector, defined by |vjp,) = erFozxﬂéb (vzj]k)|2). Thus

A= Z |Ujbk><j, b, k| = Z |1:><JajJ’ ® <UIJ" : (4.2)

j€[n],beB,ke[m)] x€Fy,j€[n]



For x € Fy, |w') = |x) is a witness for fp(z) = 0; (z[t) = 1 but (z|vj;;x) = 0 for all j, k. The
witness size is ||Af|z)||? = > [ |vai)]2-

For z € I, let |w) = > ;[j,2j) ® [vy;). The condition ijwﬂéyj (vyjlve;) = 1 implies that
All(z)|w) = Alw) = |t), so fp(x) = 1. The witness size is |[|w)]|* = 3, [|Jvz;)]|*. O

Theorem 4.2. Let f: B" — B. Let F = {(x,y) € B" x B": f(z) # f(y)}. Then

v Fn mm) Gl )
V(@Y EF, Y0ty (@l Xly)>1 Jj€ln]

AV = i max > (el ) @)
V(z.y)EF, Zj:x]’#yj <27|X]'|y>:1 J€[n]

Proof. The proof is by standard SDP duality theory. Eq. (4.3) is from [HLS07]. The expression
(4.4) for Adv*(f) is new, though, and is somewhat simpler than the dual SDP known before. [

Now the right-hand side of Eq. (4.1) is the Cholesky decomposition of Eq. (4.4)’s SDP solution. [J

Let us state three of Thm. 1.2’s corollaries. First, using also Thm. 1.1, is an exact asymptotic
expression for the quantum query complexity of a boolean function f composed on itself, and
therefore a new upper bound on the sign-degree.

Theorem 4.3. For any function f : B" — B, define f* : B"" — B as the function f composed on
itself repeatedly to a depth of k, as in Thm. 1.1. Then

lim sup sign-degree(f*)/* < klim QUfMHVE = AdvE(f) . (4.5)

k—o0

Lee and Servedio have recently shown that sign-degree(f)* < sign-degree(f*) [Lee09], based on
which the above gives an upper bound of the sign-degree of f itself.
The general adversary bound composes multiplicatively for boolean functions:

Theorem 4.4. Let f and, for j € [n], f; be boolean functions. Let g(x) = f(fl(xl), . .,fn(a:n)).
If AdvE(f;) = B for all j, then Adv¥(g) = B AdVE(S).

Proof. The > direction is from [HLS07]. For <, apply Thm. 2.3 and Thm. 1.2. O

Thm. 1.1 was a special case of the main [RS08] formula-evaluation result, which can also be
extended. Modifying [RS08, Def. 4.5], defining adversary-balanced fgrmulas, to refer to Adv™®
instead of Adv, and letting S be any finite set of boolean functions, [RS08, Thm. 4.7] becomes:

Theorem 4.5. There exists a quantum algorithm that evaluates an adversary-balanced formula
©(x) over S using O(Adv*(yp)) input queries. After efficient classical preprocessing independent
of the input x, and assuming O(1)-time coherent access to the preprocessed classical string, the
running time of the algorithm is Adv®(p)(log Adv* ()M,

The proof from [RSOS] goes through entirely. Note that layered formulas, in which gates at the
same depth are the same, are a special case of adversary-balanced formulas.



5 Correspondence between span programs and bipartite graphs

We now define a correspondence between span programs and weighted bipartite graphs, slightly
generalizing the construction in [RS08]. We analyze the spectra of these graphs, focusing on
eigenvalues near zero and eigenvectors supported on one particular “output vertex.”

Definition 5.1 (Graphs Gp(x)). Let P be a span program with target vector |t) and input vectors
|vi) foriel = Uje[n],beB Ly, in inner product space V. Let Gp be the weighted bipartite graph
with T = [dim(V)|U I, U = {u} UT and the biadjacency matriz Bg, € L(CY,CT),
w1
_ (I ANV
Ba, = (0 s (5.1)

The vertex u is called the “output verter.”
Note that Gp has two vertices for each i € I, with a weight-one edge between them. For x € B",
let Gp(x) be the same as Gp except with these weight-one edges deleted for all i € I(x).

Our main result relates spectral quantities of interest to the span program witness size. This is
the key theorem that allows span programs to be evaluated on a quantum computer.

Theorem 5.2. Let P be a span program. Then a span program P’ can be constructed such that
fpr = fp and, for all x € B™, letting {|a)} be a complete set of orthonormal eigenvectors of the
weighted adjacency matriz Ag,, (z), with corresponding eigenvalues pla), for all ¢ >0,

fr@)=1= > [l =1/2 (5.2)

o: p(a)=0

fole) =0 = > HalmP <16 (53)
a: |p(a)|<c/wsize(P)

The two main ingredients required for proving Thm. 5.2 are an eigenvalue-zero analysis of
Ag,(z) and an analysis relating eigenvalue-zero eigenvectors to an effective spectral gap. The
eigenvalue-zero analysis is a straightforward extension of [RS08, Thms. 2.5 and A.7]:

Theorem 5.3 ([RS08]). For a span program P and input x € B,
o If fp(x) =1, Agp() has an eigenvalue-zero eigenvector |1p) = (1), [vu)) € CT @ CY with

o) 2 1
N9} = T+ wsize(Px)

(5.4)

o If fp(x) =0, let |w') € V be an optimal witness (see Def. 2.2). Then there is a solution |i))
to all the eigenvalue-zero equations of Ag,(x), €xcept for the constraint at p, with

yr) 2 1 |
)~ )+ wsize(P, )

(5.5)

The difficult step in proving Thm. 5.2 is applying Eq. (5.5) to show Eq. (5.3), which is in a
certain sense an “effective” spectral gap around zero. We give a general argument that relates
properties of eigenvalue-zero eigenvectors of weighted bipartite graphs to effective spectral gaps.



Theorem 5.4. Let G be a weighted bipartite graph with biadjacency matriz Bg € L(CY,CT).
Assume that for some 6 > 0 and [t) € CT, the adjacency matriz Ag has an eigenvalue-zero
eigenvector |1) with

[(tlor)* = slll)* - (5.6)

Let G’ be the same as G except with a new vertex, u, added to the U side, and for i € T the new
edge (i, p) weighted by (i|t). That is, the biadjacency matriz of G' is

I U
Be = (|t) Ba)T (5.7)
Take {|a)} a complete set of orthonormal eigenvectors of Agr, with eigenvalues p(a). Then
VT >0, > el <8Y%/6 . (5.8)
a:|p(e)|<T

Proving Thm. 5.4 requires some involved linear algebra in order to show the key lemma:

Lemma 5.5. Let X € L(V) be a positive semi-definite matriz, |ty € V a vector, and let X' =
X +t)t|. Let {|B)} be a complete set of orthonormal eigenvectors of X', with eigenvalues A(3) > 0.
Assume that there exists a |@) € Ker(X) with |(t|o)|* > 8|||)||%. Then for any A > 0,

1 2
5/“%“ A(6)|<ug>| < 4A . (5.9)
(t13)#0

Proof of Thm. 5.2. Let P be the canonical span program from Thm. 3.2. In particular, when
fp(x) =0, |z) itself is an optimal witness. Let P’ be the same as P except with the target vector
scaled by a factor of 1/4/wsize(P). Now combine Thm. 5.3 and Thm. 5.4. O

6 Quantum algorithm for evaluating span programs

We will next connect quantum algorithms to the graph spectral properties that follow from Thm. 5.2.

Theorem 6.1. Let G = (V, E) be a complez-weighted graph with (v|Ag|v) > 0 for allv € V, and
let Vinput be a subset of degree-one vertices of G whose incident edges have weight one. Let Vippus
be partitioned as Vippur = |_|je[n]7b€B Vip. For x € B™, define G(x) from G by deleting all edges to
vertices in Jjepy Vi, -

Let f: B" — B, p € V~\ Vipput, € = Q(1) and A > 0. For x € B" let {|a)} be a complete set
of orthonormal eigenvectors of Ag(y), with corresponding eigenvalues p(a), and assume that

f@)=1= Y laul’ze (6.1)

a: p(a)=0

f@=0= 3 oWl <2 (6.2)

a: |p(a)|<A

Let abs(Ag) be the entry-wise absolute value of Ag. Then

oo L
Q(f):o<mm{|ab81<<4c>ll 1 logy }) , (6.3)

’ Kloglog%
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The intuition is that f can be evaluated by starting at |u) € CV and “measuring” Ag(z) to
precision A. Output 1 iff the measurement result is zero. Eq. (6.1) implies completeness, because
the initial state has large overlap with an eigenvalue-zero eigenstate. Eq. (6.2) implies soundness.

In fact, the proof requires two quantum algorithms, one for each bound in Eq. (6.3).

1. The O(]| abs(Ag)||/A) bound is based on Szegedy’s correspondence between continuous- and
discrete-time quantum walks [Sze04], and is similar to [RS08, App. B.2]. This is the algorithm
behind the formula-evaluation applications, Thm. 1.1, Thm. 4.3 and Thm. 4.5.

2. The second bound, Q(f) = O(l /A), is applicable in the more typical case when we do not
know an upper bound on || abs(Ag)||. The idea is to apply phase estimation to e*46() . Since
Ag is independent of the input x, recent work by Cleve et al. shows that its norm does not
matter if we can concede a logarithmic factor [CGM™'09]. For applying phase estimation,
there is still the problem that eigenvalues can wrap around the circle, e.g., e2™ = €%, leading
to false positives. To avoid these, we scale Ag(,) by a uniformly random R € (0, 144/ €2).

Although Thm. 6.1 refers only to query complexity, the first algorithm’s time complexity can
also often be bounded under reasonable assumptions on G' [RS08, CNW09].

For a span program P, the graphs Gp and Gp(x) from Def. 5.1 are of the form required by
Thm. 6.1, and the assumptions Eqgs. (6.1) and (6.2) correspond to the conclusion of Thm. 5.2.
Therefore, as a corollary of Thm. 6.1 we obtain a quantum algorithm for evaluating span programs:

Corollary 6.2. Let P be a span program. Then the quantum query complexity of fp satisfies

) log wsize(P)
=0 P . 6.4
@fp) (WSIZG( ) log log wsize(P) ) (64)
Proof. Set ¢ =1/8 in Thm. 5.2 and apply Thm. 6.1 with e = 1/2 and A = ¢/wsize(P). O

7 Open problems

Span programs appear to be a useful tool for developing quantum algorithms, especially for eval-
uating formulas, but their potential has not been fully explored. There remain a number of un-
resolved problems even in formula evaluation, especially how best to evaluate unbalanced formu-
las [Rei09b, Rei09c].

Although this extended abstract has focused on query complexity, Thm. 6.1 is more than an
information-theoretic statement; it gives explicit algorithms whose time complexity can be analyzed.
The full version [Rei09a] has further discussion of this issue, including some pertinent new theorems.

It is an interesting problem to consider functions with non-binary input alphabet and non-
boolean codomain. Then the natural generalization of the SDP in Eq. (4.4) is not dual to Adv™.
Moreover, there are functions [3]> — [3] for which both Adv® and the generalization of Eq. (4.4)
compose strictly sub-multiplicatively [Spa09].

Although it can be difficult to compute Adv™, it is often easy to guess Adv [CLO§]. If the two
bounds are close, then perhaps the Adv bound can also be turned into a quantum walk algorithm.

Finally, we ask whether the logarithmic overhead can be removed from Thm. 1.4.
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