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Box

What’s going on 
in the box?



- How can we distinguish between a box that is running a classical 
simulation of quantum physics, and a truly quantum-mechanical system? 

- How do we know if a claimed quantum computer really is quantum? 

D-Wave One



Box

Let’s see…

hammer



Box

Classical information



We can run experiments, but: 

- In general, the box’s state is quantum-mechanical, 
but we are classical, and our measurements only reveal 

classical information blindfold

fireworks

- State of the box could live in an infinite-dimensional 
Hilbert space

what we can see

infinite iceberg
- We can’t repeat the same experiment twice 

(the box might have memory)

- The box might have been designed to trick us!



Why you can’t open the box: 

1. Contractually not allowed�

2. Maybe you can — 
     but you don’t understand it

Box

hammer



D-Wave 1, 128-qubit 
“Rainier” processor 
owned by Lockheed Martin 
installed at USC’s 
Information Sciences 
Institute (ISI), operational  
since Dec. 23, 2011. 

Time-shared 40/40/20 by  
USC/LM/others 

Footprint&

! ~&200&square&feet&
! Closed&cycle&fridge&
! Consumes&~&7.5&kW&

22         © Copyright 2011 D-Wave 

Systems Inc. 

Processor&environment&

!  168&lines&from&room&
temperature&to&processor&

!  10&kg&of&metal&at&20&
milliKelvin&

!  1&nanoTesla&in&3D&across&
processor;&50,000x&less&than&
earth’s&magne8c&field&

2.725&K&
21         © Copyright 2011 D-Wave 

Systems Inc. 

Wiring&and&filtering&

!  &‘Motherboard’&of&the&
system&7&en8re&package&
cooled&to&20mK&

!  &Specialized&30MHz&
filtering&on&all&DC&lines&to&
avoid&external&noise&

!  &IO&system&for&128&qubit&
chipset&

  © Copyright 2011  D-Wave Systems Inc. 

USC/ISI’s D-Wave One 
128 (well, 108) qubit Rainier chip 

20mK operating temperature 
1 nanoTesla in 3D across processor 

Tiling of Eight-Qubit Unit Cells 



Why you can’t open the box: 

1. Contractually not allowed�

2. Maybe you can — 
     but you don’t understand it

• Too complicated

• Foundational physicsBox

hammer





3. Useful for applications: 

• Cryptography — avoiding 
side-channel attacks

• Complexity theory — 
De-quantizing proof systems

Why you can’t open the box: 

1. Contractually not allowed�

Box

hammer

2. Maybe you can — 
     but you don’t understand it

• Too complicated

• Foundational physics



Box

What’s going on 
in the box?

Classical information



Play game 106 times.  If the boxes win ≥800,000, say they’re quantum.  
The probability classical boxes pass this test is <10-700.  

Clauser-Horne-Shimony-Holt ’69: Test for “quantumness”

Any classical strategy for the boxes satisfies 
Pr[X+Y=AB mod 2]≤75%

There is a quantum strategy for which
 Pr[X+Y=AB mod 2]≈85% It uses entanglement.



Test for “quantumness”

• Any classical boxes pass with probability <10-700   

• Two quantum boxes, playing correctly, can pass with probability > 1- 10-700   

We want more…   We want to characterize and control 
everything that happens in the boxes.

Box 2

So they’re quantum—good.  
How do they work?  
What is their state?  

What are they doing?  

Box 1



a=0 a=1

b=0 b=1

Optimal quantum strategy: 

• Share 

•  P: measure in basis            or 

•  Q: measure in basis            or 

cos2(π/8)

Pr[win] ≥ 85%-ε
Theorem:  The optimal strategy is robustly unique.  
                 

State and measurements are √ε-close 
to the optimal strategy (up to local isometries).

If



Blank slideWhere are the qubits?

Follow the operators…

0 or 1 0 or 1

Two 2-outcome 
projective 
measurements



Two hyperplanes define a qubit iff 
the dihedral angles are constant



Jordan’s Lemma: 

Any two projections (on a finite-dimensional space) can be block-diagonalized into size-2 blocks.



Pr[win] ≥ 85%-ε
Theorem:  The optimal strategy is robustly unique.  
                 

State and measurements are √ε-close 
to the optimal strategy (up to local isometries).

If

Open:  What other multi-prover quantum games are rigid?  

Observed for ε=0 by Braunstein et al., and Popescu & Rohrlich, ’92

Independently observed for ε>0 by McKague, Yang & Scarani, 
                                              and Miller & Shi 2012



Blank slideSequential CHSH games



Ideal strategy:

state = n EPR pairs 

in game j, use j’th pair

General strategy:

arbitrary state 

in game j, measure with arbitrary projections

and

Main theorem:

For N=poly(n) games, if 

W.h.p. for a random set of n sequential games, 

Provers’ actual strategy 

for those n games
Ideal strategy

up to local isometries, 



qubits for game 3

qubit for 
game 1

qubits for 
game 2

1 Locate (overlapping) qubits



qubits for game 3

qubit for 
game 1

qubits for 
game 2

1 Locate (overlapping) qubits

qubit for 
game 1

qubits for 
games 2

qubits for 
games 3

2 Qubits are independent (in tensor product)

qubits for…

game 2 game 3game 1

3 Locations do not depend on history — Done!



Main idea: Leverage tensor-
  product structure between 
  the boxes
  to derive tensor-product 
  structure within        and  

qubits for game 3

qubit for 
game 1

qubits for 
game 2

1 Locate (overlapping) qubits

qubit for 
game 1

qubits for 
games 2

qubits for 
games 3

2 Qubits are independent (in tensor product)

qubits for…

game 2 game 3game 1

3 Locations do not depend on history — Done!



Main idea: Leverage tensor-product structure between the boxes 

Fact 1: Operations on the first half of an EPR state can just as well be 
applied to the second half

Fact 2: Quantum mechanics is local:  An operation on the second half of 
a state can’t affect the first half in expectation

game 1 game n

measuring this EPR 
state collapses it

games 2 to n-1

pull these operators to the other side
⇒ game 1’s qubit stays collapsed

game n’s qubit can’t 
overlap game 1

⇒



qubit for 
game 1

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



qubit for 
game 2

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



Finding a tensor-product structure

Swap!

qubit for 
game 2

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



qubit for 
game 2

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



qubit for 
game 2

Play games 2,…, n.   

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit

If extra qubit returns to     , then this strategy ≈ original 
strategy, up to the isometry “add a      qubit”

And finally, undo the transformation.



Ideal strategy:

state = n EPR pairs 

in game j, use j’th pair

General strategy:

arbitrary state 

in game j, measure with arbitrary projections

and

Main theorem:

For N=poly(n) games, if 

W.h.p. for a random set of n sequential games, 

Provers’ actual strategy 

for those n games
Ideal strategy

up to local isometries, 



Applications

• Cryptography — avoiding side-channel attacks

• Complexity theory — De-quantizing proof systems



Key-distribution schemes

Predistribution

Assumptions

Public-key cryptography

Quantum key distribution (QKD)

- Secure channel in past

- Authenticated channel
- Computational hardness

- Authenticated channel
- Quantum physics is correct
…

(e.g., Diffie-Hellman, RSA)

(e.g., BB84)

A Authenticated, 
Secret Channel B



Attacks

• Computational assumptions might be incorrect

• “Side-channel attacks”: 
Mathematical models might be incorrect

• Timing
• EM radiation leaks
• Power consumption
• …

• QKD is especially vulnerable

Attack! Counter-
measure

Attack! Counter-
measure

Attack! Counter-
measure

…

e.g., Quantum computers can factor quickly!



BB ‘84 QKD scheme*

B
measure in basis 

or

exchange measurement bases — each pair measured 
in the same basis gives one shared random bit

Polarization-entangled photons

A
measure in basis 

or

* Not exactly

exchange measurement bases: same basis ⇒ one key bit



• If        intercepts communication, shared state can be 

• If A & B always agree, then         

                               

∴Key bit is uncorrelated with E

E
Proof: Expand

Security
 proof:

B
measure in basis 

or

A
measure in basis 

or

1. Run many such experiments
2. Sacrifice some key bits to collect statistics
3. If statistics are good enough, privacy amplification (hashing) 

on remaining key gives security against any possible attacker

1. Run many such experiments
2. Sacrifice some key bits to collect statistics
3. If statistics are good enough, privacy amplification (hashing) 

on remaining key gives security against any possible attacker



A
measure in basis 

or

B
measure in basis 

or

exchange measurement bases:
same basis ⇒ one key bit

Attack on BB‘84 QKD



Attack: Devices share random two-bit string. Button 1 ⇒ Output 1st bit

Button 2 ⇒ Output 2nd bit 

B

exchange measurement bases button choices:
same button ⇒ one key bit

A

⇒ No security if A & B each have 4-dimensional systems instead of qubits
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Attack on BB‘84 QKD

also known by Eve!

with untrusted devices



Device-Independent QKD

• Full list of assumptions: 

1. Authenticated classical communication

2. Random bits can be generated locally

3. Isolated laboratories for Alice and Bob

4. Quantum theory is correct

• Example

Computational 
assumptions

Trusted devices



Our result:

History

Device-independent QKD assumptions
1. Authenticated classical communication
2. Random bits can be generated locally
3. Isolated laboratories for Alice and Bob
4. Quantum theory is correct

1. Proposed by Mayers & Yao [FOCS ‘98]

2. First security proof by Barrett, Hardy & Kent (2005), 
assuming Alice & Bob each have n devices, isolated separately

P1, …, Pn Q1, …, Qn

… more efficient schemes … impossibility results …

Device-independent QKD

• no subsystem structure assumed—two devices suffice



Our result:

History II

• Many separately isolated devices
• Quantum theory

1. Proposed by Mayers & Yao [FOCS ‘98]

2. First security proof by Barrett, Hardy & Kent (2005)

P1, …, Pn Q1, …, Qn

[AMP ‘06, MRCWB ‘06, M ‘08, HRW ‘10]: More efficient, UC secure

— Secure against non-signaling attacks!

[HRW ‘09]: Non-signaling security impossible with only two devices

3. Security proofs assuming quantum theory is correct, i.e., attacker is 
limited by quantum mechanics: 

identical tensor-product attacks → commuting measurement attacks

Device-independent QKD

• no subsystem structure assumed—two devices suffice
• assume quantum attacker
• only inverse polynomial key rate & no noise tolerated 

(as in [BHK ‘05])

[ABGMPS ‘07, PABGMS ‘09, M ‘09, HR ‘10, MPA ‘11]



Blank slide

Bigger goal: Manipulate adversarial quantum systems 
with a classical interface

IP=PSPACE ⇒ verifier poly(n,s) 
                      prover poly(T, 2s)

MIP=NEXP ⇒ verifier poly(n, log T) 
                      provers poly(T)

(for f on {0,1}n computable in time T, space s)

[FL‘93, GKR‘08]

[BFLS‘91]

Delegated classical computation 

Application 2: “Quantum computation for muggles”
a weak verifier can control powerful provers

Delegated quantum computation

…with a semi-quantum verifier, 
and one prover [Aharonov, Ben-Or, Eban ‘09, 

Broadbent, Fitzsimons, Kashefi ‘09]

Theorem 1: …with a classical verifier, 
                     and two provers

Application 3: De-quantizing quantum multi-prover 
interactive proof systems

Theorem 2:      QMIP   =   MIP* 

(classical verifier, 
entangled provers)

(everything 
quantum) proposed by

 [BFK ’10]



Pauli 
correction

Computation by teleportation

2 Two-qubit Bell 
measurements

3 Adaptive control

Requirements: 

1 Resource states, like 



(a) CHSH games

desired resource states: 

A
lic
e

Bo
b

EP
R

 p
ai

r 

(b) state tomography:
ask Bob to prepare resource states 

on Alice’s side by collapsing EPR pairs
(Alice can’t tell the difference)

Delegated 
quantum 
computation
Run one of four 
protocols, at random: 



(a) CHSH games
(b) state tomography:

ask Bob to prepare resource states 
on Alice’s side by collapsing EPR pairs

(Alice can’t tell the difference)

(a) CHSH games 
provide structure

desired resource states: 

A
lic
e

Bo
b

EP
R

 p
ai

r 

(c) process tomography: 
ask Alice to apply 

Bell measurements
(Bob can’t tell the difference)



(a) CHSH games 
provide structure

A
lic

e
Bo

b

desired resource states: 

(d) computation by 
teleportation

(b) state tomography:
ask Bob to prepare resource 

states on Alice’s side by 
collapsing EPR pairs

(Alice can’t tell the difference)

(c) process tomography: 
ask Alice to apply Bell 

measurements
(Bob can’t tell the difference)

Delegated quantum computation
Run one of four protocols, at random: 

Theorem: If the tests from the first three protocols pass with high probability, then the fourth protocol’s output is correct.

EP
R

 p
ai

r 



Application 3: De-quantizing quantum multi-prover 
interactive proof systems

Theorem 2:      QMIP   =   MIP* 

R1 R2 Rk…

quantum
verifier

quantum
messages

quantum provers

Proof idea: Start with QMIP protocol: Simulate it using an MIP* protocol 
with two new provers:

simulates original 
quantum verifier

R1 R2 Rk…

classical
verifier

classical
messages

P Q
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CHSH test: Observed statistics ⇒ system is quantum-mechanical

 Observed statistics ⇒ understand exactly what 
is going on in the system

Multiple game 
“rigidity” theorem: 

Other applications?



Blank slideOpen question: What if there’s only one box?

Box

Verifying quantum dynamics is impossible, 
but can we still check the answers to BQP computations?

(e.g., it is easy to verify a factorization)


