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Box

What’s going on 
in the box?

hammer



- How can we distinguish between a box that is running a classical 
simulation of quantum physics, and a truly quantum-mechanical system? 

- How do we know if a claimed quantum computer really is quantum? 

D-Wave One

hammer



We can run experiments, but: 

- In general, the box’s state is quantum-mechanical, 
but we are classical, and our measurements only reveal 

classical information blindfold

fireworks

- State of the box could live in an infinite-dimensional 
Hilbert space

what we can see

infinite iceberg
- We can’t repeat the same experiment twice 

(the box might have memory)

- The box might have been designed to trick us!



Box

What’s going on 
in the box?

Classical information



Why you can’t open the box: 

1. Contractually not allowed�

2. Maybe you can — 
     but you don’t understand it

Box

hammer



D-Wave 1, 128-qubit 
“Rainier” processor 
owned by Lockheed Martin 
installed at USC’s 
Information Sciences 
Institute (ISI), operational  
since Dec. 23, 2011. 

Time-shared 40/40/20 by  
USC/LM/others 

Footprint&

! ~&200&square&feet&
! Closed&cycle&fridge&
! Consumes&~&7.5&kW&

22         © Copyright 2011 D-Wave 

Systems Inc. 

Processor&environment&

!  168&lines&from&room&
temperature&to&processor&

!  10&kg&of&metal&at&20&
milliKelvin&

!  1&nanoTesla&in&3D&across&
processor;&50,000x&less&than&
earth’s&magne8c&field&

2.725&K&
21         © Copyright 2011 D-Wave 

Systems Inc. 

Wiring&and&filtering&

!  &‘Motherboard’&of&the&
system&7&en8re&package&
cooled&to&20mK&

!  &Specialized&30MHz&
filtering&on&all&DC&lines&to&
avoid&external&noise&

!  &IO&system&for&128&qubit&
chipset&

  © Copyright 2011  D-Wave Systems Inc. 

USC/ISI’s D-Wave One 
128 (well, 108) qubit Rainier chip 

20mK operating temperature 
1 nanoTesla in 3D across processor 

Tiling of Eight-Qubit Unit Cells 



Why you can’t open the box: 

1. Contractually not allowed�

2. Maybe you can — 
     but you don’t understand it

• Too complicated

• Foundational physicsBox

hammer





3. Useful for applications: 

• Cryptography — avoiding 
side-channel attacks

• Complexity theory — 
De-quantizing proof systems

Why you can’t open the box: 

1. Contractually not allowed�

Box

hammer

2. Maybe you can — 
     but you don’t understand it

• Too complicated

• Foundational physics



Clauser-Horne-Shimony-Holt game

Classical devices ⇒ Pr[win]≤75%

Quantum devices can win with prob. up to ≈85%

Alice Bob

Referee

Play game 106 times.  If the boxes win ≥800,000, say they’re quantum.  

Test for “quantum-ness”



Box 2Box 1
metaphorical 

hammer

So they’re quantum—good.  
But how do they work?  
What are they doing?  



Optimal quantum strategy: 

• Share 

• Alice measures            or 

• Bob measures            or 

A=0 A=1

B=0 B=1

cos2(π/8)

Pr[win] ≥ 85%-ε
Theorem:  The optimal strategy is robustly unique.  
                 

State and measurements are √ε-close 
to the optimal strategy (up to local isometries).

If

Alice Bob

Referee



Theorem: Pr[win] ≥ 85%-ε ⇒ √ε-close to the ideal strategy.

Follow the operators…

0 or 1 0 or 1Alice
input output

Where is Alice’s qubit?

Two 2-outcome 
projective 
measurements



Q’s strategy = On question b∈{0,1}, 

return result of measuring using projections:

Theorem: Pr[win] ≥ 85%-ε ⇒ √ε-close to the ideal strategy.

Need: P’s measurements, and Q’s measurements, too, act on just one qubit, up 

to local isometries.  What does this mean?  

Most general strategy: Alice & Bob share arbitrary initial state in 
and make two-outcome projective measurements

subspace Alice measures for question 0

subspace she measures 

for question 1 choose basis for each

By aligning the subspaces, this decomposes       as (qubit)⊗(subspace label)

Fact*: Two subspaces decompose space 

into 2D invariant spaces

Analyze strategy on each 2D subspace separately*, comparing 

state & measurements to ideal strategy



Theorem: Pr[win] ≥ 85%-ε ⇒ √ε-close to the ideal strategy.

One-qubit case: Shared state is 

A=0 basis

A=1 basis

B=1 basis

B=0 basis

(ideal)

(ideal)

…



Blank slideIs there a classical analog to CHSH game rigidity?

questions 
for Alice

questions 
for Bob

predicates 
their answers 
should satisfy

Example: Two-player game with 85% optimal winning 
probability; and where winning with probability 85%-ϵ 
means game transcript is distributed close to the 
optimal transcript distribution

Not the same!  

• The important point is not that optimal success 
probability determines the distribution of answers
—that’s easy!

• Rather, there is only one way of generating the 
correct distribution of answers: by measuring 
single EPR states                    in a certain way

Open:  What other multi-prover quantum games are rigid?  



How can we use the hammer?

Fact 2: Operations on one half of an EPR state can equally well be applied 
to the other half

Fact 1: Any k-qubit quantum state is determined by its statistics for 
measurements of the 4k Pauli operators {I, X, Y, Z}⊗k 

(because they’re a basis for Hermitian matrices)

If Bob prepares a state by measuring his half, the same state* shows up 
on Alice’s side!

⇒
(Easy proof: It holds for      and     , and any other measurement can be implemented by 
applying a unitary M, then measuring     ,     )



How can we use the hammer?

Play CHSH games with Alice and Bob for a while……
 …………………………………………………………
 …………  At some random point, stop Bob—and ask 
him to prepare a certain state.  Don’t stop Alice!  

What happens: 
Alice keeps playing CHSH games O(√ϵ)-close to honestly.  
But Bob might or might not prepare the right state.  

Repeat to gather statistics on {I, X, Z}⊗k to verify Bob follows directions

Rough 
idea:

Problems: 

1 No Y measurements!

Solution  Workaround: Some states 
don’t need Y-basis measurements to 
be determined, e.g., 

2 It’s only a one-qubit hammer!
(and errors can accumulate doubly 

exponentially quickly)



Box 2Box 1

metaphorical 
jackhammer

Multi-game rigidity theorem



Referee

BobAlice

Blank slideSequential CHSH games



Ideal strategy:

state = n EPR pairs 

in game j, use j’th pair

General strategy:

arbitrary state 

in game j, measure with arbitrary projections

and

Main theorem:

For N=poly(n) games, if 

W.h.p. for a random set of n sequential games, 

Provers’ actual strategy 

for those n games
Ideal strategy

up to local isometries, 

Referee

BobAlice



qubits for game 3

qubit for 
game 1

qubits for 
game 2

1 Locate (overlapping) qubits



qubits for game 3

qubit for 
game 1

qubits for 
game 2

1 Locate (overlapping) qubits

qubit for 
game 1

qubits for 
games 2

qubits for 
games 3

2 Qubits are independent (in tensor product)

qubits for…

game 2 game 3game 1

3 Locations do not depend on history — Done!



Main idea: Leverage tensor-
  product structure between 
  the boxes
  to derive tensor-product 
  structure within        and  

qubits for game 3

qubit for 
game 1

qubits for 
game 2

1 Locate (overlapping) qubits

qubit for 
game 1

qubits for 
games 2

qubits for 
games 3

2 Qubits are independent (in tensor product)

qubits for…

game 2 game 3game 1

3 Locations do not depend on history — Done!



Main idea: Leverage tensor-product structure between the boxes 

Fact 1: Operations on the first half of an EPR state can just as well be 
applied to the second half

Fact 2: Quantum mechanics is local:  An operation on the second half of 
a state can’t affect the first half in expectation

game 1 game n

measuring this EPR 
state collapses it

games 2 to n-1

pull these operators to the other side
(with a hybrid argument, last to first, 

incurring O(n√ϵ) error)
⇒ game 1’s qubit stays collapsed

game n’s qubit can’t 
much overlap game 1
⇒



qubit for 
game 1

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



qubit for 
game 2

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



Finding a tensor-product structure

Swap!

qubit for 
game 2

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



qubit for 
game 2

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit



qubit for 
game 2

Play games 2,…, n.   

Finding a tensor-product structure

Force it:

After game 1, move its qubit to the side & swap in a fresh qubit

If extra qubit returns to     , then this strategy ≈ original 
strategy, up to the isometry “add a      qubit”

And finally, undo the transformation.



Ideal strategy:

state = n EPR pairs 

in game j, use j’th pair

General strategy:

arbitrary state 

in game j, measure with arbitrary projections

and

Main theorem:

For N=poly(n) games, if 

W.h.p. for a random set of n sequential games, 

Provers’ actual strategy 

for those n games
Ideal strategy

up to local isometries, 

Referee

BobAlice



Applications

• Cryptography — avoiding side-channel attacks

• Complexity theory — De-quantizing proof systems



Key-distribution schemes

Predistribution

Assumptions

Public-key cryptography

Quantum key distribution (QKD)

- Secure channel in past

- Authenticated channel
- Computational hardness

- Authenticated channel
- Quantum physics is correct
…

(e.g., Diffie-Hellman, RSA)

(e.g., BB84)

C Authenticated, 
Secret Channel D



Diana’s 
crypto device 

“Bob”

Charlie’s 
crypto device 

“Alice”

C Authenticated, 
Secret Channel D

Attacks
• Computational assumptions might be wrong

• “Side-channel attacks”: 
Mathematical models might be incorrect

• Timing, EM radiation leaks, power consumption, …
• QKD is especially vulnerable

Attack! Counter-
measure

Attack! Counter-
measure

Attack! Counter-
measure

…

• Quantum computers can factor quickly!



Device-Independent QKD

• Full list of assumptions: 

1. Authenticated classical communication

2. Random bits can be generated locally

3. Isolated laboratories for Alice and Bob

4. Quantum theory is correct

• Example

Computational 
assumptions

Trusted devices



BB ‘84 QKD scheme*

D
measure in basis 

or

exchange measurement bases — each pair measured 
in the same basis gives one shared random bit

Polarization-entangled photons

C
measure in basis 

or

* Not exactly

exchange measurement bases: same basis ⇒ one key bit



C
measure in basis 

or

D
measure in basis 

or

exchange measurement bases:
same basis ⇒ one key bit

Attack on BB‘84 QKD



Attack: Devices share random two-bit string. Button 1 ⇒ Output 1st bit

Button 2 ⇒ Output 2nd bit 

D

exchange measurement bases button choices:
same button ⇒ one key bit

C

⇒ No security if A & B each have 4-dimensional systems instead of qubits

0
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Attack on BB‘84 QKD

also known by Eve!

with untrusted devices



Our result:

History

Device-independent QKD assumptions
1. Authenticated classical communication
2. Random bits can be generated locally
3. Isolated laboratories for Alice and Bob
4. Quantum theory is correct

1. Proposed by Mayers & Yao [FOCS ‘98]

2. First security proof by Barrett, Hardy & Kent (2005), 
assuming Alice & Bob each have n devices, isolated separately

P1, …, Pn Q1, …, Qn

… more efficient schemes … impossibility results …

Device-independent QKD

• no subsystem structure assumed—two devices suffice



Our result:

History II

• Many separately isolated devices
• Quantum theory

1. Proposed by Mayers & Yao [FOCS ‘98]

2. First security proof by Barrett, Hardy & Kent (2005)

P1, …, Pn Q1, …, Qn

[AMP ‘06, MRCWB ‘06, M ‘08, HRW ‘10]: More efficient, UC secure

— Secure against non-signaling attacks!

[HRW ‘09]: Non-signaling security impossible with only two devices

3. Security proofs assuming quantum theory is correct, i.e., attacker is 
limited by quantum mechanics: 

identical tensor-product attacks → commuting measurement attacks

Device-independent QKD

• no subsystem structure assumed—two devices suffice
• assume quantum attacker
• only inverse polynomial key rate & no noise tolerated 

(as in [BHK ‘05])

[ABGMPS ‘07, PABGMS ‘09, M ‘09, HR ‘10, MPA ‘11]



Blank slide

Bigger goal: Manipulate adversarial quantum systems 
with a classical interface

IP=PSPACE ⇒ verifier poly(n,s) 
                      prover poly(T, 2s)

MIP=NEXP ⇒ verifier poly(n, log T) 
                      provers poly(T)

(for f on {0,1}n computable in time T, space s)

[FL‘93, GKR‘08]

[BFLS‘91]

Delegated classical computation 

Application 2: “Quantum computation for muggles”
a weak verifier can control powerful provers

Delegated quantum computation

…with a semi-quantum verifier, 
and one prover [Aharonov, Ben-Or, Eban ‘09, 

Broadbent, Fitzsimons, Kashefi ‘09]

Theorem 1: …with a classical verifier, 
                     and two provers

Application 3: De-quantizing quantum multi-prover 
interactive proof systems

Theorem 2:      QMIP   =   MIP* 

(classical verifier, 
entangled provers)

(everything 
quantum) proposed by

 [BFK ’10]



Pauli 
correction

Computation by teleportation

2 Two-qubit Bell 
measurements

3 Adaptive control

Requirements: 

1 Resource states, like 



(a) CHSH games

desired resource states: 

A
lic
e

Bo
b

EP
R

 p
ai

r 

(b) state tomography:
ask Bob to prepare resource states 

on Alice’s side by collapsing EPR pairs
(Alice can’t tell the difference)

Delegated 
quantum 
computation
Run one of four 
protocols, at random: 



(a) CHSH games
(b) state tomography:

ask Bob to prepare resource states 
on Alice’s side by collapsing EPR pairs

(Alice can’t tell the difference)

(a) CHSH games 
provide structure

desired resource states: 

A
lic
e

Bo
b

EP
R

 p
ai

r 

(c) process tomography: 
ask Alice to apply 

Bell measurements
(Bob can’t tell the difference)



(a) CHSH games

A
lic

e
Bo

b

desired resource states: 

(d) computation by 
teleportation

(b) state tomography:
ask Bob to prepare resource 

states on Alice’s side by 
collapsing EPR pairs

(Alice can’t tell the difference)

(c) process tomography: 
ask Alice to apply Bell 

measurements
(Bob can’t tell the difference)

Delegated quantum computation
Run one of four protocols, at random: 

Theorem: If the tests from the first three protocols pass with high probability, then the fourth protocol’s output is correct.

EP
R

 p
ai

r 



Application 3: De-quantizing quantum multi-prover 
interactive proof systems

Theorem 2:      QMIP   =   MIP* 

R1 R2 Rk…

quantum
verifier

quantum
messages

quantum provers

Proof idea: Start with QMIP protocol: Simulate it using an MIP* protocol 
with two new provers:

simulates original 
quantum verifier

R1 R2 Rk…

classical
verifier

classical
messages

P Q

Open:  Can the round complexity be reduced?
Does encoding a fault-tolerant circuit protect against attacks/noise?
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CHSH test: Observed statistics ⇒ system is quantum-mechanical

 Observed statistics ⇒ understand exactly what 
is going on in the system

Multiple game 
rigidity theorem: 

Other applications?



Blank slideOpen question: What if there’s only one device?

Device

Verifying quantum dynamics is impossible, 
but can we still check the answers to BQP computations?

(e.g., it is easy to verify a factorization)


