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input 

variables may appear 
more than once…

but gates cannot 
have fan-out!

(only in a circuit can 
subexpressions be reused)

(unless formula 
is read-once)

Problem: Evaluate φ(x).  (Formula/Game tree evaluation problem)



• Problem: Evaluate the formula, with minimal queries to the inputs bits xi.

• Classical history

• Some formulas, e.g., OR(x1, x2, …, xN), require Ω(N) time

• Randomized algorithm in E-time O(N0.754) 
for balanced binary AND-OR formulas [Snir ‘85, Saks & Wigderson ‘86]

• Flip coins to decide which subtree to evaluate next, short-circuit

• Optimal [SW ‘86, Santha ‘95]

• General formulas, ??

logd λmax(
(

0 d
1 d−1

2

)
)

Problem history: Classical computation



• Classical history

• Randomized algorithm in E-time Θ(N0.754) for balanced binary formulas

• Other formulas may require Ω(N) time

• Quantum history

• Ω(√N) queries required for read-once [Barnum, Saks ‘04]

• Grover search: Evaluates OR(x1, x2, …, xN)

using O(√N) queries (O(√N log log N)-time)

• Can be applied recursively to evaluate shallow trees:

• Evaluates regular depth-d AND-OR formula in √N O(log N)d-1 
queries [Buhrman, Cleve, Wigderson ‘98]

• Search on faulty oracles [Høyer, Mosca, de Wolf ‘03] ⇒ O(√N cd) queries

=
{

1 if ∃ an i : xi = 1
0 otherwise

Problem history: Quantum computation



• Classical history

• Randomized algorithm in E-time Θ(N0.754) for balanced binary formulas

• Other formulas may require Ω(N) time

• Quantum history

• Ω(√N) queries required for read-once [Barnum, Saks ‘04]

• Grover search: Evaluates OR(x1, x2, …, xN)

using O(√N) queries (O(√N log log N)-time)

• Can be applied recursively to evaluate shallow trees

• Farhi, Goldstone, Gutmann 2007: Breakthrough quantum algorithm 
for evaluating balanced binary AND-OR formula in N½+o(1) time

=
{

1 if ∃ an i : xi = 1
0 otherwise

Quantum Leap!



Farhi, Goldstone, Gutmann ‘07 algorithm
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• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be 
evaluated in time N½+o(1).

• Convert formula to a tree: 

• Attach an infinite line to the root 

NAND



x1 x2 x3 x4 x5 x7x6 x8

Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be 
evaluated in time N½+o(1).

• Convert formula to a tree: 

• Attach an infinite line to the root 

NAND



Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be 
evaluated in time N½+o(1).

• Convert formula to a tree: 

• Attach an infinite line to the root 

• Add edges above leaf nodes evaluating to one…

=0

=1

NAND



Continuous-time quantum walk [FGG ‘07]

x11 = 0x11 = 1



FGG quantum walk |ψt〉 = eiAGt|ψ0〉



FGG quantum walk |ψt〉 = eiAGt|ψ0〉



ϕ(x) = 0 ϕ(x) = 1

Wave transmits!Wave reflects!

FGG quantum walk |ψt〉 = eiAGt|ψ0〉



[FGG ‘07] algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced 
binary AND-OR formula can be evaluated 
in time N½+o(1).

• Theorem: 

• An “approximately balanced” AND-OR 
formula can be evaluated with O(√N) 
queries (optimal for read-once!).

• A general AND-OR formula can be 
evaluated with N½+o(1) queries.

NAND
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NAND NAND NAND NAND

x1 x2 x3 x4 x5 x7x6 x8
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[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after efficient preprocessing.

Analysis by scattering theory.



• Quantumly, complexity is √N queries 
always, all the way up to k=N (i.e., 
evaluating OR(x1,…,xN), Grover 
search)

• General AND-OR formulas can be 
evaluated with N½+o(1) queries

• Expanding MAJ3 into AND-OR gates 
gives O(√5d) quantumly.  

• Also, the algorithm generalizes to give 
optimal algorithm for evaluating 
iterated f, where f is any 3-bit 
function

[Jayram, Kumar, Sivakumar ’03]

• Classical complexity of evaluating 
balanced k-ary alternating AND-
OR tree is (k/2)depth = N~(1-1/log2k) 

— approaches N as k increases

• Classical complexity of 
evaluating general AND-OR 
formulas is not known?

• Classical complexity of evaluating 
iterative MAJ3 formula is unknown: 
between                 and 

• (the generalization of the optimal 
AND-OR algorithm is not optimal 
when applied to MAJ3 trees)

Remarks on formula evaluation algorithms:

Classical      vs.      Quantum

Ω
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)
o
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8/3
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Formula evaluation algorithm

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ)

Quantize that walk
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• Convert {AND, OR, NOT} formula into a tree: 
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Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ) Quantize that walk
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Substitution rules:

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ) Quantize that walk



• Start with classical random walk on the tree…

. . .

AND

. . .

. . .

OR

. . .

x1 x1

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ) Quantize that walk

• P(stepping to subtree) ∝ √(size of that subtree)

• (For a balanced tree, walk is uniform)



x9x5x6x1 x1
x9

x8x7

x5

x4x2 x3 x1x1

If x9=0, STOP!

. . .

AND

. . .

. . .

OR

. . .

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ) Quantize that walk

• P(stepping to subtree) ∝ √(size of that subtree)

• (For a balanced tree, walk is uniform)

• Make leaves (inputs) evaluating to 0 probability sinks



If xi=0, STOP!
. . .

AND

. . .

. . .

OR

. . .

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ) Quantize that walk

• Classically, roll a dice to determine next step

• Quantumly, the dice is part of the quantum state.  Instead of 
randomizing the dice between steps, apply a unitary operator 
to it.

{p1, p2, . . . , p6}
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Transition probabilities U = reflection about the state



• Classically, roll a dice to determine next step

• Quantumly, the dice is part of the quantum state.  Instead of 
randomizing the dice between steps, apply a unitary operator 
to it.

• Probability sinks in the classical r.w. (inputs xi=0) become 
phase flips in the qu. walk ⇒ standard phase flip oracle

If xi=0, STOP!
. . .

AND

. . .

. . .

OR

. . .

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ) Quantize that walk
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| 〉| 〉+

• Start at the root

• Apply phase estimation to the quantum walk with precision 1/√N 
(i.e., run the walk for time √N)

• If phase is 0, output “φ(x)=1”

• Otherwise output “φ(x)=0”

If xi=0, STOP!
. . .

AND

. . .

. . .

OR

. . .

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ) Quantize that walk

The Algorithm:



Formula evaluation algorithm

Convert formula φ 
into a graph G(φ)

Define classical 
random walk on G(φ)

Quantize that walk
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AND
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OR

. . .

If xi=0, STOP!

| 〉| 〉
| 〉| 〉

√
p1 +

√
p2

+√
p5

√
p6

√
p3

√
p4

| 〉 | 〉+
+
+

{p1, p2, . . . , p6}

P(stepping to subtree) 

∝ √(size of that subtree)



2. Why It Works



• Start at the root

• Apply phase estimation to the quantum walk with precision 1/√N 
(i.e., run the walk for time √N)

• If eigenvalue is 0, output “φ(x)=1”

• Otherwise output “φ(x)=0”

The Algorithm:

Precision-δ phase estimation 
on a unitary U, starting at an 
e-state, returns the e-value to 
precision δ, except w/ prob. 1/4.
It uses O(1/δ) calls to c-U.  

Note:

∴We need to carry out spectral 
analysis of the quantum walk U(x)

|eigenvector〉 corr.
eigenvalue ±δ



=1

=0

Szegedy eigenvalue and eigenvector 
correspondence

Quantum coined walk U(x): W’ted adj. matrix AG(x) of G(x):

eigenvalues 
& eigenvectors

2|E| dimensions |V| dimensions

√
P ◦ PT

Note: Much like the [FGG] 
algorithm, edges to input 

vertices evaluating to 1 are 
deleted in G(x).

[FOCS ‘04]



• Start at the root

• Apply phase estimation to the walk 
with precision 1/√N

• If e-value is 0, output “φ(x)=1”

• Otherwise output “φ(x)=0”

The Algorithm:

• Main Theorem:

• φ(x)=1 ⇒ AG(x) has eigenvalue-0 e.v. with Ω

(1) support on the root.

• φ(x)=0 ⇒ AG(x) has no eigenvectors 

overlapping the root with |eigenvalue|<2/√N.

∴ Algorithm is correct, except 

w/ error rate <1/4 (say)



• Theorem: φ(x)=1         ∃ a λ=0 eigenstate of AG(x) supported on root r.⇔
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Proof: By induction, we argue that for every v, a vector α 
satisfying constraints for vertices above v must satisfy: 

Induction hypothesis: 

• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0



• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0
• Induction hypothesis: 

λ=0 eigenvector constraint 
at c is αv=0. ✓

Base case: v an input 

xi=0: xi=1:

v v

c c

v and c are not connected in 
G(x), so αv is not constrained.✓



r

v1

• Induction hypothesis: 

T1
T3

T2

|αT1〉 |αT2〉 |αT3〉

AND

v2 v3

αv1 + αr = 0
αv2 + αr = 0
αv3 + αr = 0

• If any φ(vi)=0, αvi=0 ⇒ αr=0

• If all φ(vi)=1, can scale each 
        so αv1=αv2=αv3≠0, then 
set αr=-αvi≠0

AND gate gadget constraints: 

|αTi〉

✓AND

• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0



r

v1

• Induction hypothesis: 

T1
T3

T2

|αT1〉 |αT2〉 |αT3〉

OR

v2 v3 • αr can be ≠0 ⇔ at least one 

αvi≠0 ⇔ at least one φ(vi)=1

OR gate gadget constraint: 

✓OR

αv1 + αv2 + αv3 + αr = 0

• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0



Just in case…

0 0 0 1 1 1

a a

αr=-aαr=0αr=0

AND(0,0)=0 AND(0,1)=0 AND(1,1)=1

0 0



• Theorem: φ(x)=1         ∃ a λ=0 eigenstate of AG(x) supported on root r.

• Main Theorem:

• φ(x)=1         AG(x) has eigenvalue-0 e.v. with Ω(1) support on the root.

• φ(x)=0         AG(x) has no eigenvectors overlapping the root with 
                     |eigenvalue|<1/√N.

• Remains to show support αr is large (Ω(1)) when φ(r)=0, and that there is a 
large spectral gap (1/√N) away from E=0 when φ(r)=1.  

• Proofs by same induction but quantitative.

• In the balanced case, √N is from losing a factor of two every other level

⇔ ✓

⇒
⇒

OR

p

v

αp

αv
∈ (0, svλ)

−αv

αp
∈ (0, svλ)

sv =
√

s2
v1

+ · · · + s2
v3

=
√

size(ϕv)

if true

if false

with



[FGG ‘07] algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced 
binary AND-OR formula can be evaluated 
in time N½+o(1).

• Theorem: 

• An “approximately balanced” AND-OR 
formula can be evaluated with O(√N) 
queries (optimal for read-once!).

• A general AND-OR formula can be 
evaluated with N½+o(1) queries.

[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after efficient preprocessing.

Analysis by scattering theory.
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Where do o(1) 
terms come from?



[FGG ‘07] algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced 
binary AND-OR formula can be evaluated 
in time N½+o(1).

• Theorem: 

• An “approximately balanced” AND-OR 
formula can be evaluated with O(√N) 
queries (optimal for read-once!).

• A general AND-OR formula can be 
evaluated with N½+o(1) queries.

[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after efficient preprocessing.

Analysis by scattering theory.

Fixed, by working with 
coined quantum walks 
(via Szegedy corr.) 
instead of continuous-
time qu. walks

Where do o(1) 
terms come from?



Algorithm for very unbalanced trees

• Problem: We lose control of recursion fudge factors in a very deep formula. 

• Intuition: Walk from root will not even reach the farthest leaves in time √N.

…

E.g., if depth is N, then 
gap could be only 1/N





root



• Problem: Walk might not even reach the bottom of a deep formula in time √N

• Solution: Rebalance the formula tree (in preprocessing)

Theorem: ([Bshouty, Cleve, Eberly ‘91, Bonet & Buss ‘94]) For any NAND 
formula φ and k ≥ 2, can efficiently construct an equivalent NAND formula 
φ’ with 

• depth(φ’) = O(k log N)

• size(φ’) ≤ N1+1/log k

• Open Classical ?: Is [BCE‘91] formula rebalancing optimal?

• Does there exist formula φ, k such that every equivalent φ’ of depth at most k 
log N has size(φ’) ≥ N1+1/log k?

• Open: What is the effect of general formula rebalancing on the ADV bound?

…

Algorithm for very unbalanced trees

size-depth tradeoff (set k=2√(log N) to balance size*depth)



• Classical complexity of evaluating 
balanced k-ary alternating AND-
OR tree is (k/2)depth = N~(1-1/log2k) 

— approaches N as k increases

• Classical complexity of 
evaluating general AND-OR 
formulas is not known?

• Classical complexity of evaluating 
iterative MAJ3 formula is unknown: 
between                 and 

• (the generalization of the optimal 
AND-OR algorithm is not optimal 
when applied to MAJ3 trees)

Remarks on formula evaluation algorithms:

Classical      vs.      Quantum

Ω
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)d

)
o
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8/3
)d
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• Quantumly, complexity is √N queries 
always, all the way up to k=N (i.e., 
evaluating OR(x1,…,xN), Grover 
search)

• General AND-OR formulas can be 
evaluated with N½+o(1) queries

• Expanding MAJ3 into AND-OR gates 
gives O(√5d) quantumly.  

• Also, the algorithm generalizes to give 
optimal algorithm for evaluating 
iterated f, where f is any 3-bit 
function

[Jayram, Kumar, Sivakumar ‘03]
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. . .

OR

. . .G(ρ1) G(ρk)ρ1 ρk

NOT

G(ρ)ρ

MAJ

ρ1 ρ2 ρ3 G(ρ3)G(ρ2)G(ρ1)

EQUAL

G(ρ1)ρ1 G(¬ρ1). . . ρk . . . . . .G(ρk) G(¬ρk)

PARITY

G(ρ1)ρ1 ρ2 G(ρ2)G(¬ρ2) G(¬ρ1)

We present a time-efficient and query-optimal quantum algorithm for evaluating adversary-bound-
balanced formulas on an extended gate set. The allowed gates include arbitrary two- and three-bit 
gates, as well as bounded fan-in AND, OR, PARITY and EQUAL gates. The technique behind the 
formula evaluation algorithm is a new framework for quantum algorithms based on span programs.
For example, the classical complexity of evaluating the balanced ternary majority formula is unknown, 
and the natural generalization of the standard balanced AND-OR formula evaluation algorithm is known 
to be suboptimal. In contrast, a generalization of the optimal quantum {AND, OR, NOT} formula 
evaluation algorithm is optimal for evaluating the balanced ternary majority formula.

span programs [Karchmer, Wigderson ‘93],…



• Is the phase estimation needed, or can the walk be run directly?

• Is the eigenstate useful as a witness?

• Open Classical ?: Is [BCE‘91] formula rebalancing optimal?

• Does there exist formula φ, k such that every equivalent φ’ of depth at 
most k log N has size(φ’) ≥ N1+1/log k?

• Effect of rebalancing on the adversary lower bound

• Optimal algorithm for more formula types, more span-program-based quantum 
algorithms; see [quant-ph/0710.2630]

Open problems

Classical learning theory:

Corollary: AND-OR formulas of size N are (classically) PAC-learnable 
in time 2^{N½+o(1)}.

 (and many more…)

[O’Donnell & Servedio ‘03]

link


