
x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1
	 Any AND-OR
formula of size N
can be evaluated
in time N1/2+o(1) on a
quantum computer

Ben Reichardt
Caltech

Andris Ambainis
U. Latvia

Andrew Childs
U. Waterloo

Robert Špalek
Google

Shengyu Zhang
Caltech

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

Def: {AND, OR, NOT} Formula = Tree of nested gates

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

Def: {AND, OR, NOT} Formula = Tree of nested gates
input

variables may appear
more than once…

but gates cannot
have fan-out!

(only in a circuit can
subexpressions be reused)

(unless formula
is read-once)

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

Def: {AND, OR, NOT} Formula = Tree of nested gates
input

variables may appear
more than once…

but gates cannot
have fan-out!

(only in a circuit can
subexpressions be reused)

(unless formula
is read-once)

Problem: Evaluate φ(x). (Formula/Game tree evaluation problem)

• Problem: Evaluate the formula, with minimal queries to the inputs bits xi.

• Classical history

• Some formulas, e.g., OR(x1, x2, …, xN), require Ω(N) time

• Randomized algorithm in E-time O(N0.754)
for balanced binary AND-OR formulas [Snir ‘85, Saks & Wigderson ‘86]

• Flip coins to decide which subtree to evaluate next, short-circuit

• Optimal [SW ‘86, Santha ‘95]

• General formulas, ??

logd λmax(
(

0 d
1 d−1

2

)
)

Problem history: Classical computation

• Classical history

• Randomized algorithm in E-time Θ(N0.754) for balanced binary formulas

• Other formulas may require Ω(N) time

• Quantum history

• Ω(√N) queries required for read-once [Barnum, Saks ‘04]

• Grover search: Evaluates OR(x1, x2, …, xN)

using O(√N) queries (O(√N log log N)-time)

• Can be applied recursively to evaluate shallow trees:

• Evaluates regular depth-d AND-OR formula in √N O(log N)d-1
queries [Buhrman, Cleve, Wigderson ‘98]

• Search on faulty oracles [Høyer, Mosca, de Wolf ‘03] ⇒ O(√N cd) queries

=
{

1 if ∃ an i : xi = 1
0 otherwise

Problem history: Quantum computation

• Classical history

• Randomized algorithm in E-time Θ(N0.754) for balanced binary formulas

• Other formulas may require Ω(N) time

• Quantum history

• Ω(√N) queries required for read-once [Barnum, Saks ‘04]

• Grover search: Evaluates OR(x1, x2, …, xN)

using O(√N) queries (O(√N log log N)-time)

• Can be applied recursively to evaluate shallow trees

• Farhi, Goldstone, Gutmann 2007: Breakthrough quantum algorithm
for evaluating balanced binary AND-OR formula in N½+o(1) time

=
{

1 if ∃ an i : xi = 1
0 otherwise

Quantum Leap!

Farhi, Goldstone, Gutmann ‘07 algorithm

NAND

NAND

NAND

NAND NAND NAND NAND

x1 x2 x3 x4 x5 x7x6 x8

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be
evaluated in time N½+o(1).

• Convert formula to a tree:

• Attach an infinite line to the root

NAND

x1 x2 x3 x4 x5 x7x6 x8

Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be
evaluated in time N½+o(1).

• Convert formula to a tree:

• Attach an infinite line to the root

NAND

Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be
evaluated in time N½+o(1).

• Convert formula to a tree:

• Attach an infinite line to the root

• Add edges above leaf nodes evaluating to one…

=0

=1

NAND

Continuous-time quantum walk [FGG ‘07]

x11 = 0x11 = 1

FGG quantum walk |ψt〉 = eiAGt|ψ0〉

FGG quantum walk |ψt〉 = eiAGt|ψ0〉

ϕ(x) = 0 ϕ(x) = 1

Wave transmits!Wave reflects!

FGG quantum walk |ψt〉 = eiAGt|ψ0〉

[FGG ‘07] algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced
binary AND-OR formula can be evaluated
in time N½+o(1).

• Theorem:

• An “approximately balanced” AND-OR
formula can be evaluated with O(√N)
queries (optimal for read-once!).

• A general AND-OR formula can be
evaluated with N½+o(1) queries.

NAND

NAND

NAND

NAND NAND NAND NAND

x1 x2 x3 x4 x5 x7x6 x8

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after efficient preprocessing.

Analysis by scattering theory.

• Quantumly, complexity is √N queries
always, all the way up to k=N (i.e.,
evaluating OR(x1,…,xN), Grover
search)

• General AND-OR formulas can be
evaluated with N½+o(1) queries

• Expanding MAJ3 into AND-OR gates
gives O(√5d) quantumly.

• Also, the algorithm generalizes to give
optimal algorithm for evaluating
iterated f, where f is any 3-bit
function

[Jayram, Kumar, Sivakumar ’03]

• Classical complexity of evaluating
balanced k-ary alternating AND-
OR tree is (k/2)depth = N~(1-1/log2k)

— approaches N as k increases

• Classical complexity of
evaluating general AND-OR
formulas is not known?

• Classical complexity of evaluating
iterative MAJ3 formula is unknown:
between and

• (the generalization of the optimal
AND-OR algorithm is not optimal
when applied to MAJ3 trees)

Remarks on formula evaluation algorithms:

Classical vs. Quantum

Ω
((

7/3
)d

)
o
((

8/3
)d

)

Formula evaluation algorithm

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ)

Quantize that walk

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

• Convert {AND, OR, NOT} formula into a tree:

. . .

AND

. . .

. . .

OR

. . .

NOT

Substitution rules:

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

ϕ(x)

x1x1
. . .

AND

. . .

. . .

OR

. . .

NOT

Substitution rules:

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

x1 x1
. . .

AND

. . .

. . .

OR

. . .

NOT

Substitution rules:

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

• Start with classical random walk on the tree…

. . .

AND

. . .

. . .

OR

. . .

x1 x1

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

• P(stepping to subtree) ∝ √(size of that subtree)

• (For a balanced tree, walk is uniform)

x9x5x6x1 x1
x9

x8x7

x5

x4x2 x3 x1x1

If x9=0, STOP!

. . .

AND

. . .

. . .

OR

. . .

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

• P(stepping to subtree) ∝ √(size of that subtree)

• (For a balanced tree, walk is uniform)

• Make leaves (inputs) evaluating to 0 probability sinks

If xi=0, STOP!
. . .

AND

. . .

. . .

OR

. . .

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

• Classically, roll a dice to determine next step

• Quantumly, the dice is part of the quantum state. Instead of
randomizing the dice between steps, apply a unitary operator
to it.

{p1, p2, . . . , p6}
| 〉| 〉
| 〉| 〉

√
p1 +

√
p2

+√
p5

√
p6

√
p3

√
p4

| 〉 | 〉+
+
+

Transition probabilities U = reflection about the state

• Classically, roll a dice to determine next step

• Quantumly, the dice is part of the quantum state. Instead of
randomizing the dice between steps, apply a unitary operator
to it.

• Probability sinks in the classical r.w. (inputs xi=0) become
phase flips in the qu. walk ⇒ standard phase flip oracle

If xi=0, STOP!
. . .

AND

. . .

. . .

OR

. . .

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

{p1, p2, . . . , p6}
| 〉| 〉
| 〉| 〉

√
p1 +

√
p2

+√
p5

√
p6

√
p3

√
p4

| 〉 | 〉+
+
+

Transition probabilities U = reflection about the state

| 〉| 〉+

• Start at the root

• Apply phase estimation to the quantum walk with precision 1/√N
(i.e., run the walk for time √N)

• If phase is 0, output “φ(x)=1”

• Otherwise output “φ(x)=0”

If xi=0, STOP!
. . .

AND

. . .

. . .

OR

. . .

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ) Quantize that walk

The Algorithm:

Formula evaluation algorithm

Convert formula φ
into a graph G(φ)

Define classical
random walk on G(φ)

Quantize that walk

. . .

AND

. . .

. . .

OR

. . .

If xi=0, STOP!

| 〉| 〉
| 〉| 〉

√
p1 +

√
p2

+√
p5

√
p6

√
p3

√
p4

| 〉 | 〉+
+
+

{p1, p2, . . . , p6}

P(stepping to subtree)

∝ √(size of that subtree)

2. Why It Works

• Start at the root

• Apply phase estimation to the quantum walk with precision 1/√N
(i.e., run the walk for time √N)

• If eigenvalue is 0, output “φ(x)=1”

• Otherwise output “φ(x)=0”

The Algorithm:

Precision-δ phase estimation
on a unitary U, starting at an
e-state, returns the e-value to
precision δ, except w/ prob. 1/4.
It uses O(1/δ) calls to c-U.

Note:

∴We need to carry out spectral
analysis of the quantum walk U(x)

|eigenvector〉 corr.
eigenvalue ±δ

=1

=0

Szegedy eigenvalue and eigenvector
correspondence

Quantum coined walk U(x): W’ted adj. matrix AG(x) of G(x):

eigenvalues
& eigenvectors

2|E| dimensions |V| dimensions

√
P ◦ PT

Note: Much like the [FGG]
algorithm, edges to input

vertices evaluating to 1 are
deleted in G(x).

[FOCS ‘04]

• Start at the root

• Apply phase estimation to the walk
with precision 1/√N

• If e-value is 0, output “φ(x)=1”

• Otherwise output “φ(x)=0”

The Algorithm:

• Main Theorem:

• φ(x)=1 ⇒ AG(x) has eigenvalue-0 e.v. with Ω

(1) support on the root.

• φ(x)=0 ⇒ AG(x) has no eigenvectors

overlapping the root with |eigenvalue|<2/√N.

∴ Algorithm is correct, except

w/ error rate <1/4 (say)

• Theorem: φ(x)=1 ∃ a λ=0 eigenstate of AG(x) supported on root r.⇔

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1 x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

ϕ(x)

x1x1

. . .

AND

. . .

. . .

OR

. . .

Proof: By induction, we argue that for every v, a vector α
satisfying constraints for vertices above v must satisfy:

Induction hypothesis:

• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0

• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0
• Induction hypothesis:

λ=0 eigenvector constraint
at c is αv=0. ✓

Base case: v an input

xi=0: xi=1:

v v

c c

v and c are not connected in
G(x), so αv is not constrained.✓

r

v1

• Induction hypothesis:

T1
T3

T2

|αT1〉 |αT2〉 |αT3〉

AND

v2 v3

αv1 + αr = 0
αv2 + αr = 0
αv3 + αr = 0

• If any φ(vi)=0, αvi=0 ⇒ αr=0

• If all φ(vi)=1, can scale each
 so αv1=αv2=αv3≠0, then
set αr=-αvi≠0

AND gate gadget constraints:

|αTi〉

✓AND

• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0

r

v1

• Induction hypothesis:

T1
T3

T2

|αT1〉 |αT2〉 |αT3〉

OR

v2 v3 • αr can be ≠0 ⇔ at least one

αvi≠0 ⇔ at least one φ(vi)=1

OR gate gadget constraint:

✓OR

αv1 + αv2 + αv3 + αr = 0

• φv(x)=0 ⇒ αv=0

• φv(x)=1 ⇒ αv can be ≠0

Just in case…

0 0 0 1 1 1

a a

αr=-aαr=0αr=0

AND(0,0)=0 AND(0,1)=0 AND(1,1)=1

0 0

• Theorem: φ(x)=1 ∃ a λ=0 eigenstate of AG(x) supported on root r.

• Main Theorem:

• φ(x)=1 AG(x) has eigenvalue-0 e.v. with Ω(1) support on the root.

• φ(x)=0 AG(x) has no eigenvectors overlapping the root with
 |eigenvalue|<1/√N.

• Remains to show support αr is large (Ω(1)) when φ(r)=0, and that there is a
large spectral gap (1/√N) away from E=0 when φ(r)=1.

• Proofs by same induction but quantitative.

• In the balanced case, √N is from losing a factor of two every other level

⇔ ✓

⇒
⇒

OR

p

v

αp

αv
∈ (0, svλ)

−αv

αp
∈ (0, svλ)

sv =
√

s2
v1

+ · · · + s2
v3

=
√

size(ϕv)

if true

if false

with

[FGG ‘07] algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced
binary AND-OR formula can be evaluated
in time N½+o(1).

• Theorem:

• An “approximately balanced” AND-OR
formula can be evaluated with O(√N)
queries (optimal for read-once!).

• A general AND-OR formula can be
evaluated with N½+o(1) queries.

[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after efficient preprocessing.

Analysis by scattering theory.

[FGG ‘07] algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced
binary AND-OR formula can be evaluated
in time N½+o(1).

• Theorem:

• An “approximately balanced” AND-OR
formula can be evaluated with O(√N)
queries (optimal for read-once!).

• A general AND-OR formula can be
evaluated with N½+o(1) queries.

[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after efficient preprocessing.

Analysis by scattering theory.

Where do o(1)
terms come from?

[FGG ‘07] algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced
binary AND-OR formula can be evaluated
in time N½+o(1).

• Theorem:

• An “approximately balanced” AND-OR
formula can be evaluated with O(√N)
queries (optimal for read-once!).

• A general AND-OR formula can be
evaluated with N½+o(1) queries.

[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after efficient preprocessing.

Analysis by scattering theory.

Fixed, by working with
coined quantum walks
(via Szegedy corr.)
instead of continuous-
time qu. walks

Where do o(1)
terms come from?

Algorithm for very unbalanced trees

• Problem: We lose control of recursion fudge factors in a very deep formula.

• Intuition: Walk from root will not even reach the farthest leaves in time √N.

…

E.g., if depth is N, then
gap could be only 1/N





root

• Problem: Walk might not even reach the bottom of a deep formula in time √N

• Solution: Rebalance the formula tree (in preprocessing)

Theorem: ([Bshouty, Cleve, Eberly ‘91, Bonet & Buss ‘94]) For any NAND
formula φ and k ≥ 2, can efficiently construct an equivalent NAND formula
φ’ with

• depth(φ’) = O(k log N)

• size(φ’) ≤ N1+1/log k

• Open Classical ?: Is [BCE‘91] formula rebalancing optimal?

• Does there exist formula φ, k such that every equivalent φ’ of depth at most k
log N has size(φ’) ≥ N1+1/log k?

• Open: What is the effect of general formula rebalancing on the ADV bound?

…

Algorithm for very unbalanced trees

size-depth tradeoff (set k=2√(log N) to balance size*depth)

• Classical complexity of evaluating
balanced k-ary alternating AND-
OR tree is (k/2)depth = N~(1-1/log2k)

— approaches N as k increases

• Classical complexity of
evaluating general AND-OR
formulas is not known?

• Classical complexity of evaluating
iterative MAJ3 formula is unknown:
between and

• (the generalization of the optimal
AND-OR algorithm is not optimal
when applied to MAJ3 trees)

Remarks on formula evaluation algorithms:

Classical vs. Quantum

Ω
((

7/3
)d

)
o
((

8/3
)d

)

• Quantumly, complexity is √N queries
always, all the way up to k=N (i.e.,
evaluating OR(x1,…,xN), Grover
search)

• General AND-OR formulas can be
evaluated with N½+o(1) queries

• Expanding MAJ3 into AND-OR gates
gives O(√5d) quantumly.

• Also, the algorithm generalizes to give
optimal algorithm for evaluating
iterated f, where f is any 3-bit
function

[Jayram, Kumar, Sivakumar ‘03]

Span-program-based
quantum algorithm for

formula evaluation

Robert Špalek
Google

Ben Reichardt
Caltech

[quant-ph/0710.2630]

. . .

OR

. . .G(ρ1) G(ρk)ρ1 ρk

NOT

G(ρ)ρ

MAJ

ρ1 ρ2 ρ3 G(ρ3)G(ρ2)G(ρ1)

EQUAL

G(ρ1)ρ1 G(¬ρ1). . . ρkG(ρk) G(¬ρk)

PARITY

G(ρ1)ρ1 ρ2 G(ρ2)G(¬ρ2) G(¬ρ1)

We present a time-efficient and query-optimal quantum algorithm for evaluating adversary-bound-
balanced formulas on an extended gate set. The allowed gates include arbitrary two- and three-bit
gates, as well as bounded fan-in AND, OR, PARITY and EQUAL gates. The technique behind the
formula evaluation algorithm is a new framework for quantum algorithms based on span programs.
For example, the classical complexity of evaluating the balanced ternary majority formula is unknown,
and the natural generalization of the standard balanced AND-OR formula evaluation algorithm is known
to be suboptimal. In contrast, a generalization of the optimal quantum {AND, OR, NOT} formula
evaluation algorithm is optimal for evaluating the balanced ternary majority formula.

span programs [Karchmer, Wigderson ‘93],…

• Is the phase estimation needed, or can the walk be run directly?

• Is the eigenstate useful as a witness?

• Open Classical ?: Is [BCE‘91] formula rebalancing optimal?

• Does there exist formula φ, k such that every equivalent φ’ of depth at
most k log N has size(φ’) ≥ N1+1/log k?

• Effect of rebalancing on the adversary lower bound

• Optimal algorithm for more formula types, more span-program-based quantum
algorithms; see [quant-ph/0710.2630]

Open problems

Classical learning theory:

Corollary: AND-OR formulas of size N are (classically) PAC-learnable
in time 2^{N½+o(1)}.

 (and many more…)

[O’Donnell & Servedio ‘03]

link

