
Faster quantum algorithm for
evaluating game trees
Ben Reichardt x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

University of Waterloo

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

Problem: Evaluate the AND-OR formula with
minimal queries to the input bits xi.

x9x5x6x1 x1x9

x8x7

x5

x4x2 x3

AND OR AND

AND

AND

OR

OR

ϕ(x)

x1x1

Motivations:

• Two-player games (Chess, Go, …)
- Nodes ↔ game histories

- White wins iff ∃ move s.t. ∀ responses, ∃
move s.t. …

• Decision version of min-max tree
evaluation

- inputs are real numbers

- want to decide if minimax is ≥10 or not

• Model for studying effects of
composition on complexity

For balanced, binary formulas

α-β pruning is optimal ⇒ Randomized complexity N0.754

OR

AND

OR

AND AND AND AND

x1 x2 x3 x4 x5 x7x6 x8

ϕ(x)

[Snir ‘85, Saks & Wigderson ’86, Santha ’95]

Deterministic decision-tree complexity = N
Any deterministic algorithm for evaluating a read-once
AND-OR formula must examine every leaf

N0.51 ≤ Randomized complexity ≤ N
[Heiman, Wigderson ’91]

(see also K. Amano, Session 12B Tuesday)

Deterministic decision-tree complexity = N
N0.51 ≤ Randomized complexity ≤ N

Quantum query complexity = √N
(very special case of the next talk)

This talk: What is the time complexity for quantum algorithms?

U0
qu

er
y
x U1

qu
er

y
x … UT f(x)

w/ prob. ≥2/3

|1〉+ |2〉 "→ (−1)x1|1〉+ (−1)x2 |2〉
|x ∈

{0,
1}

n ||j〉 (−1)xj |j〉

OR

AND

OR

AND AND AND AND

x1 x2 x3 x4 x5 x7x6 x8

ϕ(x)

Farhi, Goldstone, Gutmann ’07 algorithm

• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be evaluated
in time N½+o(1).

• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be evaluated
in time N½+o(1).

• Convert formula to a tree, and attach a line to the root

• Add edges above leaf nodes evaluating to one

=0

=1

Farhi, Goldstone, Gutmann ’07 algorithm

OR

AND

OR

AND AND AND AND

x1 x2 x3 x4 x5 x7x6 x8

ϕ(x)

Farhi, Goldstone, Gutmann ’07 algorithm

• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be evaluated
in time N½+o(1).

• Convert formula to a tree, and attach a line to the root

• Add edges above leaf nodes evaluating to one

x11 = 0x11 = 1

=0

=1

ϕ(x) = 0 ϕ(x) = 1

|ψt〉 = eiAGt|ψ0〉

ϕ(x) = 0 ϕ(x) = 1

|ψt〉 = eiAGt|ψ0〉

Wave transmits!Wave reflects!

ϕ(x) = 0 ϕ(x) = 1

ϕ(x) = 0

What’s going on?

Observe: State inside tree converges to
energy-zero eigenstate of the graph

ϕ(x) = 0

What’s going on?

=0

=1

Observe: State inside tree converges to
energy-zero eigenstate of the graph
(supported on vertices that witness the
formula’s value)

Energy-zero eigenvectors for AND & OR gadgets

• Identify the output edge of one gadget
with an input edge of the next.

• (Note: all I/O edge weights are 1.)

• Corollary: Gφ(x) has an eigenvalue-zero
eigenstate supported on root aO ⇔

φ(x)=1

1

2

OR:AND:

1

2

+1+1

-1

-1

-1

-1

Together in a formula:

+1

-1

-1

+1

+1 Input adds constraints
via dangling edges:

G
0

Balanced AND-OR formula evaluation in O(√n) time

Squared norm =

+1

-1

-1

+1

+1

+1

+1

+1

+1

1 + 2 + 2 + 4 + 4 + 8 + 8 + · · · + 2
1
2 log2 n = O(

√
n)

· · ·

1

2

2

Effective spectral gap lemma

If M u ≠ 0, then M u ⊥ Kernel(M✝)! !
(

by the SVD M =
∑

ρ

ρ |vρ〉〈uρ| (

∥∥∥∥∥ ‖
projection of M u onto the

span of the left singular vectors
of M with singular values ≤λ

≤ λ u

∥∥∥∥∥

!
‖!

(
since (‖ΠM!u‖2 =

∑

ρ≤λ

ρ2|〈uρ|u〉|2

Squared norm = O(√n)

1

2

2

n¼

-1

-1

+1

+1

+1

+1

+1

+1

· · ·
1/n
¼

1/n¼

Case φ(x)=1

Constant overlap on root vertex

Case φ(x)=1

Eigenvalue-zero
eigenvector with constant
overlap on root vertex

Case φ(x)=0

∥∥∥∥∥ ‖
projection of M u onto the

span of the left singular vectors
of M with singular values ≤λ

≤ λ u

∥∥∥∥∥

!
‖!

n!

-1

-1

+1

+1

+1

+1

+1

+1

· · ·
1/n
!

1/n!

· · ·
1/n
¼

1/n¼

n¼
-n¼

n¼

n¼

u!

1
M u!

root
√n

Root vertex has
Ω(1/√n) effective spectral gap

Case φ(x)=1

Eigenvalue-zero
eigenvector with constant
overlap on root vertex

Case φ(x)=0

n!

-1

-1

+1

+1

+1

+1

+1

+1

· · ·
1/n
!

1/n!

Root vertex has
Ω(1/√n) effective spectral gap

· · ·
1/n
!

1/n!

n!
-n!

n!

n!

u!

1

M u!

Quantum algorithm:
Run a quantum walk on the graph, for √n steps from the root.

• φ(x)=1 ⇒ walk is stationary

• φ(x)=0 ⇒ walk mixes

Evaluating unbalanced formulas
[Ambainis, Childs, Reichardt, Špalek, Zhang ’10]

Proper edge weights on an unbalanced formula give √(n·depth) queries

depth n, spectral gap 1/n

“Rebalancing” Theorem:
For any AND-OR formula with n leaves,
there is an equivalent formula with
n e√log n leaves, and depth e√log n

[Bshouty, Cleve, Eberly ’91, Bonet, Buss ’94]

n e√log n leaves, and depth (log n) e√log n

O(√n e√log n)
query algorithm
⇒

Today: O(√n log n)

Tensor-product composition

OR: AND:

Direct-sum composition

∨ ∧ ∨

Tensor-product compositionDirect-sum composition

Tensor-product composition

∨ ∧

Properties
• Depth from root stays ≤2

— 1/√n spectral gap

• Graph stays sparse—
provided composition is
along the maximally
unbalanced formula

• Middle vertices Maximal
false inputs

↔

010
100

0010
1100

01010

10010

00100

Final algorithm

∧ ∨ ∧
∧

so
rt

 s
ub

fo
rm

ul
as

 b
y

siz
e

• Identify the output edge of one gadget
with an input edge of the next.

• (Note: all I/O edge weights are 1.)

• Corollary: Gφ(x) has an eigenvalue-zero
eigenstate supported on root aO ⇔

φ(x)=1

• With direct-sum composition, large depth implies small spectral gap

• Tensor-product composition gives √n-query algorithm (optimal), but graph is
dense and norm too large for efficient implementation of quantum walk

• Hybrid approach:
• Decompose the formula into paths,

longer in less balanced areas
• Along each path, tensor-product
• Between paths, direct-sum

• Tradeoff gives 1/(√n log n) spectral gap,
while maintaining sparsity and small norm
⇒ Quantum walk has efficient implementation

(poly-log n after preprocessing)

ACRŠZ ’10

√n e√log n

today

√n log n

