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Problem: Evaluate the AND-OR formula with 
minimal queries to the input bits xi.
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Motivations:

• Two-player games (Chess, Go, …)
- Nodes ↔ game histories

- White wins iff ∃ move s.t. ∀ responses, ∃ 
move s.t. …

• Decision version of min-max tree 
evaluation

- inputs are real numbers

- want to decide if minimax is ≥10 or not

• Model for studying effects of 
composition on complexity



For balanced, binary formulas 

α-β pruning is optimal ⇒ Randomized complexity N0.754 
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[Snir ‘85, Saks & Wigderson ’86, Santha ’95]

Deterministic decision-tree complexity = N
Any deterministic algorithm for evaluating a read-once 
AND-OR formula must examine every leaf

N0.51 ≤ Randomized complexity ≤ N 
[Heiman, Wigderson ’91]

(see also K. Amano, Session 12B Tuesday)



Deterministic decision-tree complexity = N
N0.51 ≤ Randomized complexity ≤ N 

Quantum query complexity = √N 
(very special case of the next talk)

This talk: What is the time complexity for quantum algorithms?
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Farhi, Goldstone, Gutmann ’07 algorithm

• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be evaluated 
in time N½+o(1).



• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be evaluated 
in time N½+o(1).

• Convert formula to a tree, and attach a line to the root

• Add edges above leaf nodes evaluating to one
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Farhi, Goldstone, Gutmann ’07 algorithm
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|ψt〉 = eiAGt|ψ0〉

ϕ(x) = 0 ϕ(x) = 1



|ψt〉 = eiAGt|ψ0〉

Wave transmits!Wave reflects!

ϕ(x) = 0 ϕ(x) = 1



ϕ(x) = 0

What’s going on?






Observe: State inside tree converges to 
energy-zero eigenstate of the graph



ϕ(x) = 0

What’s going on?
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Observe: State inside tree converges to 
energy-zero eigenstate of the graph
(supported on vertices that witness the 
formula’s value)



Energy-zero eigenvectors for AND & OR gadgets

• Identify the output edge of one gadget 
with an input edge of the next.  

• (Note: all I/O edge weights are 1.)

• Corollary: Gφ(x) has an eigenvalue-zero 
eigenstate supported on root aO ⇔ 

φ(x)=1
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Balanced AND-OR formula evaluation in O(√n) time
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Effective spectral gap lemma

If M u ≠ 0, then M u ⊥ Kernel(M✝)! !
(

by the SVD M =
∑

ρ

ρ |vρ〉〈uρ| (

∥∥∥∥∥ ‖
projection of M u onto the 

span of the left singular vectors 
of M with singular values ≤λ

≤ λ u

∥∥∥∥∥

!
‖!

(
since (‖ΠM!u‖2 =

∑

ρ≤λ

ρ2|〈uρ|u〉|2



Squared norm = O(√n)
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Case φ(x)=1

Constant overlap on root vertex



Case φ(x)=1

Eigenvalue-zero 
eigenvector with constant 
overlap on root vertex

Case φ(x)=0
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Root vertex has 
Ω(1/√n) effective spectral gap



Case φ(x)=1

Eigenvalue-zero 
eigenvector with constant 
overlap on root vertex

Case φ(x)=0
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Root vertex has 
Ω(1/√n) effective spectral gap
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Quantum algorithm: 
Run a quantum walk on the graph, for √n steps from the root.  

• φ(x)=1 ⇒ walk is stationary

• φ(x)=0 ⇒ walk mixes



Evaluating unbalanced formulas
[Ambainis, Childs, Reichardt, Špalek, Zhang ’10]

Proper edge weights on an unbalanced formula give √(n·depth) queries

depth n, spectral gap 1/n

“Rebalancing” Theorem: 
For any AND-OR formula with n leaves, 
there is an equivalent formula with 
n e√log n leaves, and depth e√log n 

[Bshouty, Cleve, Eberly ’91, Bonet, Buss ’94]

n e√log n leaves, and depth (log n) e√log n 

O(√n e√log n)
query algorithm
⇒

Today: O(√n log n)



Tensor-product composition

OR: AND:

Direct-sum composition
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Tensor-product composition
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Properties
• Depth from root stays ≤2

— 1/√n spectral gap

• Graph stays sparse—
provided composition is 
along the maximally 
unbalanced formula

• Middle vertices     Maximal 
false inputs

↔
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10010

00100



Final algorithm
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• Identify the output edge of one gadget 
with an input edge of the next.  

• (Note: all I/O edge weights are 1.)

• Corollary: Gφ(x) has an eigenvalue-zero 
eigenstate supported on root aO ⇔ 

φ(x)=1

• With direct-sum composition, large depth implies small spectral gap 

• Tensor-product composition gives √n-query algorithm (optimal), but graph is 
dense and norm too large for efficient implementation of quantum walk

• Hybrid approach:
• Decompose the formula into paths, 

longer in less balanced areas
• Along each path, tensor-product
• Between paths, direct-sum

• Tradeoff gives 1/(√n log n) spectral gap, 
while maintaining sparsity and small norm
⇒ Quantum walk has efficient implementation

(poly-log n after preprocessing)

ACRŠZ ’10

√n e√log n

today

√n log n


