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Intuition 
  Work on encoded data 
  Correct errors to prevent spread 

•  Quantum fault-tolerance: Shor (1996) 
–  Using a poly(log N)-sized code, tolerate 1/poly(log N) gate error 



Intuition 
  Work on encoded data 
  Correct errors to prevent spread 
  Concatenate procedure for arbitrary reliability 

•  Shor (1996): poly(log N)-sized code to tolerate 1/poly(log N) gate error 
•  Aharonov & Ben-Or (1997), Kitaev (1997),  
  Gotteman-Evslin-Kakade-Preskill (1997), Knill-Laflamme-Zurek (1997) 
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  Basic estimates 
–  Aharonov & Ben-Or (1997) 
–  Knill-Laflamme-Zurek (1998) 
–  Preskill (1998) 
–  Gottesman (1997) 

  Optimized estimates 
–  Zalka (1997) 
–  Reichardt (2004)  
–  Svore-Cross-Chuang-Aho (2005)  

  2-dimensional locality constraint 
–  Szkopek et al (2004) 
–  Svore-Terhal-DiVincenzo (2005) 

Distance-3 code thresholds 

  But no constant threshold was even proven to exist for distance-3 codes! 
–  Aharonov & Ben-Or proof only works for codes of distance at least 5 

  Today: Threshold for distance-3 codes 



  Knill (2005) has highest threshold estimate ~5% 
–  … Albeit with large constant overhead (1-3% more reasonable) 
–  Again, no threshold has been proved to exist 

  Gaps between proven and estimated thresholds 
–  Estimates are as high as ~5% 
–  But no proven lower-bounds (?) 
–  Aliferis-Gottesman-Preskill (2005): 2.6 x 10-5 

Distance-2 code threshold 

  Caveat on small versus large codes 
–  Steane (2003) found 23-qubit Golay code had higher threshold (based 
on simulations), particularly with slow measurements 
–  23-qubit Golay code proven: 10-4 



Fault-tolerance for m-bit repetition code 

  Encoding 
- 0 → 00…0 
- 1 → 11…1 

  Gate compilation rule: transverse, 
followed by error correction 

- e.g., CNOTL 

  Error correction:  

–  e.g., classically, with majority gate 
and fan-out: 

 Concatenation… 

= 

distance m 



  Concatenation: 
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Classical fault-tolerance for repetition code 



  Error correction 

  Ancilla preparation and verification 
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Quantum fault-tolerance for repetition code 



Quantum fault-tolerance scheme 
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Fault-tolerance for m-bit repetition code 

  Encoding 
- 0 → 00…0 
- 1 → 11…1 

  Gate compilation rule: transverse, 
followed by error correction 

- e.g., CNOTL 

  Error correction:  

–  e.g., classically, with majority gate 
and fan-out: 

 Concatenation… 

= 

distance m 



Aharonov & Ben-Or threshold proof intuition 

  Idea: Maintain inductive invariant of (1-)goodness.  (A block is good “if it has 
at most one bad subblock.”) 
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Aharonov & Ben-Or threshold proof intuition 

  Idea: Maintain inductive invariant of (1-)goodness.  (A block is good “if it has 
at most one bad subblock.”) 
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Aharonov & Ben-Or threshold proof intuition 

  Idea: Maintain inductive invariant of (1-)goodness.  (A block is good “if it has 
at most one bad subblock.”) 
  Why not for distance-three codes? 
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  New idea: Most blocks should have no bad subblocks.  Maintain inductive 
invariant of a controlled probability distribution of errors: “wellness.”  (A block is 
well “if it only rarely has a bad subblock.”) 

(one level k-1 error is already too many)  
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Concatenated distance-3 code proof overview 

  Def: Error states 
  Def: Relative error states 
  Def: 1-good block 
  Aharonov/Ben-Or threshold setup 
  Def: Logical failure 
  Aharonov/Ben-Or threshold proof 
  Def: “well” block 
  Distance-3 code threshold setup and proof for stabilizer operations 

  Extension to universality via magic states distillation 



Def: Error states 
  Tracking errors 
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Def: Error states 
  Tracking errors   Block error states: ideal recursive 

decoding 

  Note: Block errors do not follow same 
rules as bit errors 

-  e.g., 001 + 010 = 011 
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Def: Relative Error states 
  Tracking errors   Block error states: ideal recursive 

decoding 

  Note: relative state is relative to state 
of superblock, not superblock’s relative 
state 
  We can measure block relative states. 
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Def: good 
  Tracking errors   Block error states: ideal recursive decoding 

  Relative error states 
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  Def: A blockk is relative (1-)goodk if it has at most one subblockk-1 either in 
relative error or not relative goodk-1 itself.  
(Every bit [≡ block0] is relative good0.) 



good examples   A good block has at 
most one subblock either 
in relative error or bad. 
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Aharonov/Ben-Or threshold setup 

  Claim Ck (CNOTk): On success: 
–  If the input blocks are goodk,                                                                   then 
the output blocks are goodk, and a logical CNOT is applied. 
–  On arbitrary inputs,                                                                                    the 
output blocksk are goodk and a possibly incorrect logical effect is applied. 

  The failure probability is at most Ck (C0 = p). 
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  Base noise model: CNOT0 gates fail, giving X errors, independently w/ prob. p. 



Def: Logical failure 
  Def: Logical operation Uk on one or more blocksk has the correct logical 
effect if the diagram commutes: 

  Uk has a possibly incorrect logical effect if the same diagram commutes but 
with            on the top arrow, where P is a Pauli operator or Pauli product on 
the involved blocks. 



Aharonov/Ben-Or threshold setup 
  Claim Ck (CNOTk): On success: 

–  If the input blocks are goodk, then the output blocks are goodk, and a logical 
CNOT, the correct logical effect, is applied. 
–  On arbitrary inputs, the output blocksk are goodk and a possibly incorrect 
logical effect is applied. 

  The failure probability is at most Ck (C0 = p). 

  Claim Bk (Correctionk): On success: 
–  If the input block is good, then the output block is good and no logical 
effect is applied. 
–  On arbitrary input, the output block is good.  

  The failure probability is at most Bk (B0 = 0). 
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  Two operations: 
A.    
B.  Error correction 
C.  (Logical) CNOT gate 

  Proofs by induction: Implications: 
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  Two indexed claims: 
A.    
B.  Error correctionk 
C.  CNOTk 

success except w/ prob.  
success except w/ prob.  

Aharonov/Ben-Or threshold proof 

  Base noise model: CNOT0 gates fail with X errors independently w/ prob. p 



Proof overview 

  Def: Error states 
  Def: Relative error states 
  Def: 1-good block 
  Aharonov/Ben-Or threshold setup 
  Def: Logical failure 
  Aharonov/Ben-Or threshold proof 
  Def: “well” block 
  Distance-3 code threshold setup and proof for stabilizer operations 

  Extension to universality via magic states distillation 



  Def: A blockk is relative (1-)wellk(p1,…,pk) if it has at most one subblockk-1 either 
in relative error or not relative wellk-1(p1,…,pk-1) itself.  
    Additionally, the probability of such a subblock, conditioned on the block’s state 
and the state of all bits in other blocks, is ≤ pk.   
(Every bit [≡ block0] is relative well0.)  

Def: well 
  Tracking errors   Block error states: ideal recursive decoding 
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  Note: Conditioned on block’s state, e.g., 
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Aharonov/Ben-Or threshold setup 
  Claim Ck (CNOTk): On success: 

–  If the input blocks are goodk, then the output blocks are goodk, and a logical 
CNOT, the correct logical effect, is applied. 
–  On arbitrary inputs, the output blocksk are goodk and a possibly incorrect 
logical effect is applied. 

  The failure probability is at most Ck (C0 = p). 

  Claim Bk (Correctionk): On success: 
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–  On arbitrary input, the output block is good.  
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Dist 3 code setup 
  Claim Ck (CNOTk): On success: 

–  If the input blocks are wellk(b1,…,bk), then the output blocks are wellk(b1,
…,bk), and a logical CNOT is applied. 
–  On arbitrary inputs, the output blocksk are wellk(b1,…,bk) and a possibly 
incorrect logical effect is applied. 

  The failure probability is at most Ck (C0 = p). 
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Dist 3 code setup 
  Claim Ck (CNOTk): On success: 

–  If the input blocks are wellk(b1,…,bk), then the output blocks are wellk(b1,
…,bk), and a logical CNOT is applied. 
–  On arbitrary inputs, the output blocksk are wellk(b1,…,bk) and a possibly 
incorrect logical effect is applied. 

  The failure probability is at most Ck (C0 = p). 

  Claim Bk (Correctionk): On success: 
–  If the input block is wellk(b1,…,bk), then the output block is wellk(b1,…,bk) 
and no logical effect is applied. 
–  On arbitrary input, the output block is wellk(b1,…,bk).  

  The failure probability is at most Bk (B0 = 0). 
Additionally, if all but one of the input subblocksk-1 are wellk-1(b1,…,bk-1), then with 
probability at least 1-Bk’ there is no logical effect and the output is wellk(b1,…,bk). 
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Declare success if Ancillask both succeed & at most one level k-1 failure.   

Dist 3 threshold proof 

Correctionk proof:  

  Claim Bk (Correctionk): With probability at least            , the output blockk is wellk(b1,…,bk) 
and, if the input is wellk(b1,…,bk), there is no logical effect.   
    Additionally, if all but one of the input subblocksk-1 are wellk-1(b1,…,bk-1), then with probability 
at least              there is no logical effect and the output is wellk(b1,…,bk). 

Proof is mostly similar to Aharonov/Ben-Or proof, with one exception…  



Dist 3 threshold proof 

Correctionk proof:  

Proof is mostly similar to Aharonov/Ben-Or proof, with one exception… 
Why are two syndrome extractions necessary?  

  Claim Bk (Correctionk): With probability at least            , the output blockk is wellk(b1,…,bk) 
and, if the input is wellk(b1,…,bk), there is no logical effect.   
    Additionally, if all but one of the input subblocksk-1 are wellk-1(b1,…,bk-1), then with probability 
at least              there is no logical effect and the output is wellk(b1,…,bk). 
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Gottesman-Knill Theorem: Stabilizer 
operations are efficiently classically 
simulable. 
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Def: Stabilizer operations are  
  Clifford group unitaries 

  Preparation of  
  Measurement in 
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Universality from stabilizer operations & 
repeated preparation of   

Def: Stabilizer operations are  
  Clifford group unitaries 

  Preparation of  
  Measurement in 

Theorem: [Shi‘02] CNOT + any single-
qubit gate not in Clifford group gives 
quantum universality. 

Fact 1: Stab ops + prepare  
            ! universality. 

(if θ ≠ k π/2) 
Proof: How to apply  



Application 

Universal           
fault-tolerance 

Stabilizer op.      
fault-tolerance 
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Fact 2: Taking two copies of       , 
postselecting on even parity, 
! universality if             .  

Theorem: [Shi‘02] CNOT + any single-
qubit gate not in Clifford group gives 
quantum universality. 

Fact 1: Stab ops + prepare  
            ! universality. 



Q: Do                                        form a universal set? 
stabilizer operations, 
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       Theorem: [R ‘04]          Yes for        w/ <14.6% error 



Conclusion 

  Def: Error states 
  Def: Relative error states 
  Def: 1-good block 
  Aharonov/Ben-Or threshold setup 
  Def: Logical failure 
  Aharonov/Ben-Or threshold proof 
  Def: “well” block 
  Distance 3 code threshold setup and proof for stabilizer operations 
  Extension to universality via magic states distillation 

Proof overview: 

  Optimize proof for improving provable threshold 
  Prove threshold for postselection-based fault-tolerance scheme 

- also for specialized error models 
  Prove upper/lower bounds on magic states distillation, improve efficiency… 

Open questions: 


