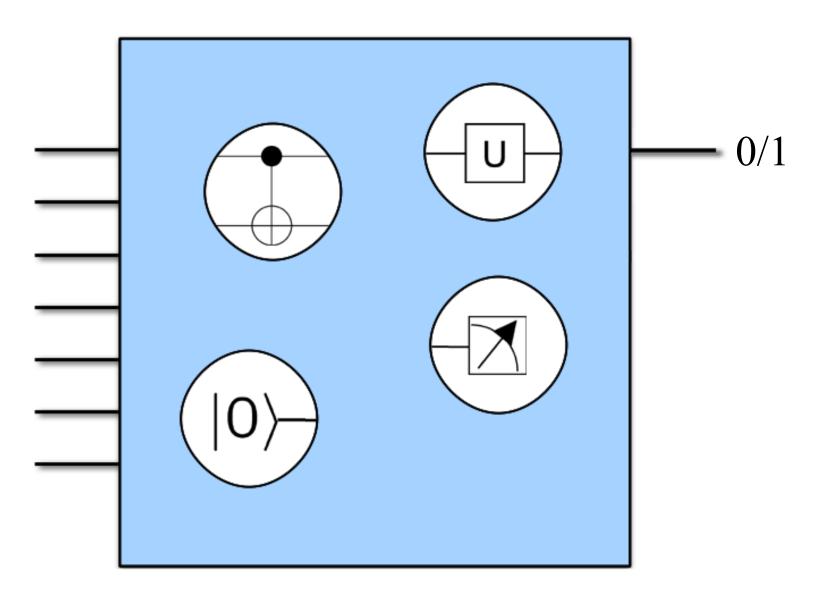
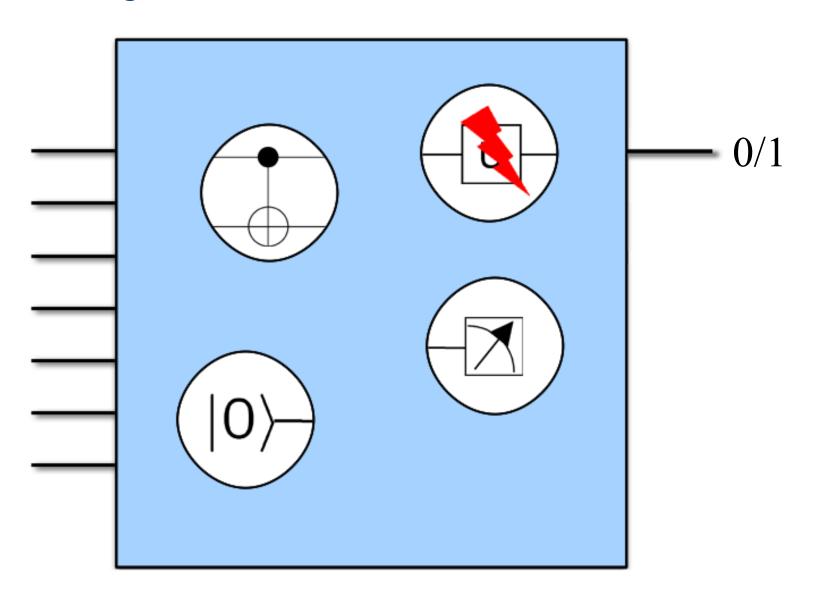
Fault-tolerance threshold for a distance-three quantum code

Ben Reichardt UC Berkeley

N gate circuit

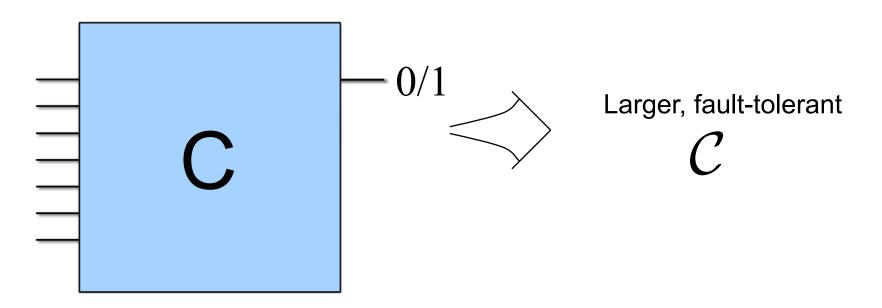


N gate circuit ⇒ Need error ≪1/N



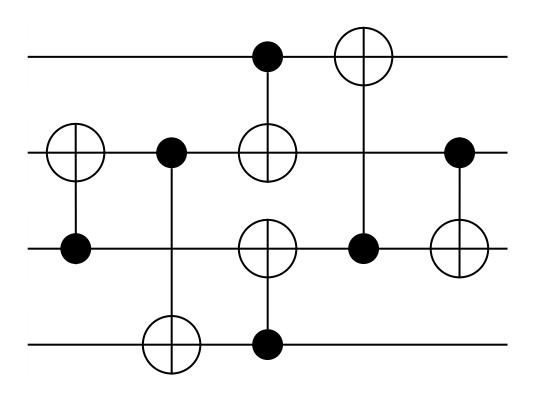
Quantum fault-tolerance problem

• Classical fault-tolerance: Von Neumann (1956)



Work on encoded data

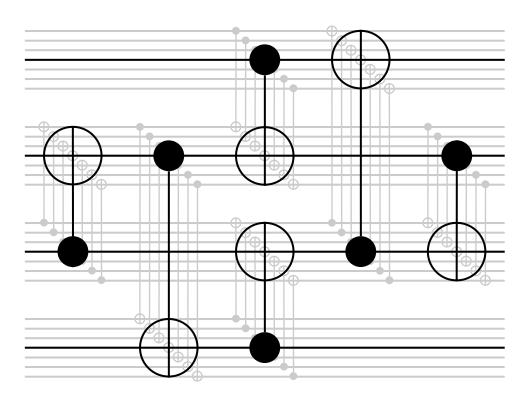
Intuition



• Quantum fault-tolerance: Shor (1996)

Work on encoded data

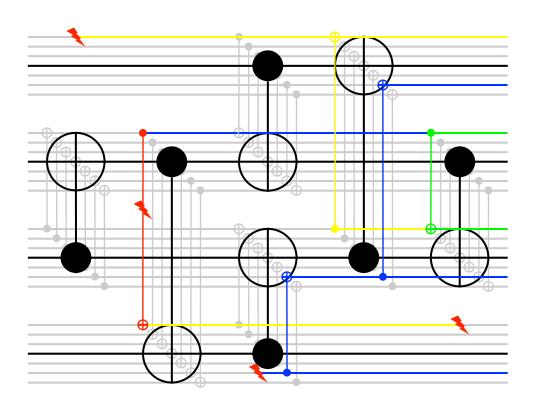
Intuition



• Quantum fault-tolerance: Shor (1996)

Intuition

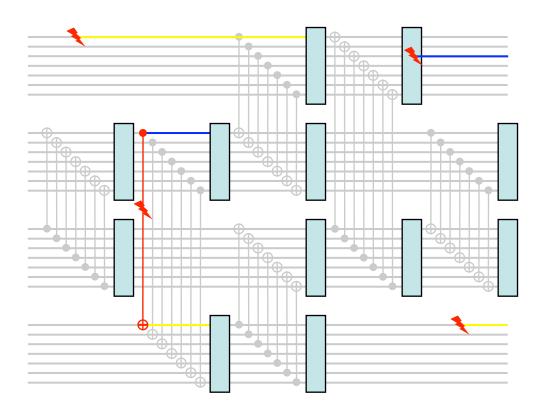
- Work on encoded data
- Correct errors to prevent spread



• Quantum fault-tolerance: Shor (1996)

Intuition

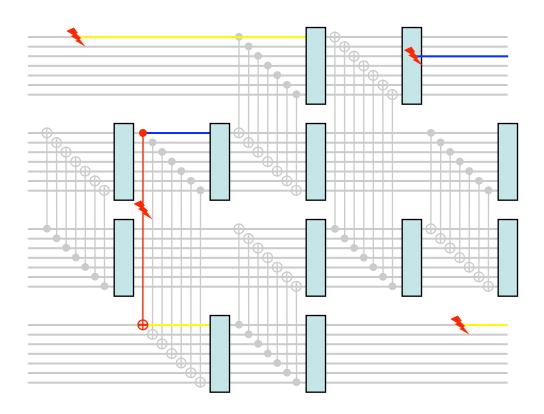
- Work on encoded data
- Correct errors to prevent spread



- Quantum fault-tolerance: Shor (1996)
 - Using a poly(log N)-sized code, tolerate 1/poly(log N) gate error

Intuition

- Work on encoded data
- Correct errors to prevent spread
- Concatenate procedure for arbitrary reliability



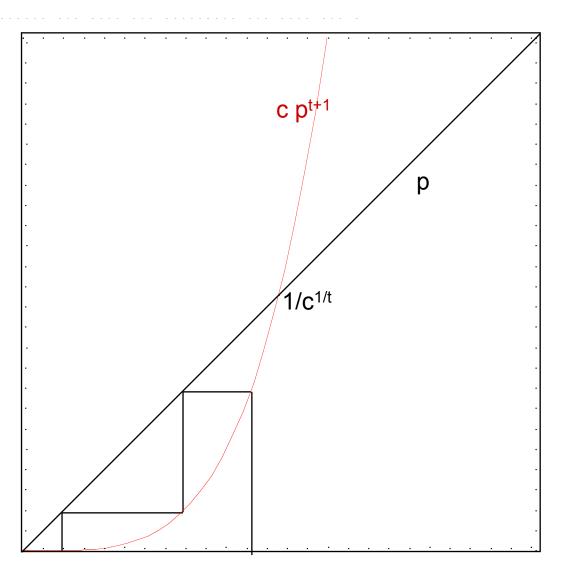
- Shor (1996): poly(log N)-sized code to tolerate 1/poly(log N) gate error
- Aharonov & Ben-Or (1997), Kitaev (1997),
 Gotteman-Evslin-Kakade-Preskill (1997), Knill-Laflamme-Zurek (1997)

Threshold from concatenation

- N gate circuit
 - \Rightarrow Want error $\ll 1/N$
- m-qubit, t-error correcting code

Probability of error	Physical bits per logical bit	Logical gate error rate
c p ^{t+1}	m	
$\sim p^{(t+1)^2}$	m²	
p ^{(t+1)³}	m^3	

O(log log N) concatenations poly(log N) physical bits / logical



Physical gate error rate p

Distance-3 code thresholds

- Basic estimates
 - Aharonov & Ben-Or (1997)
 - Knill-Laflamme-Zurek (1998)
 - Preskill (1998)
 - Gottesman (1997)
- Optimized estimates
 - Zalka (1997)
 - Reichardt (2004)
 - Svore-Cross-Chuang-Aho (2005)
- 2-dimensional locality constraint
 - Szkopek et al (2004)
 - Svore-Terhal-DiVincenzo (2005)
- But no constant threshold was even proven to exist for distance-3 codes!
 - Aharonov & Ben-Or proof only works for codes of distance at least 5
- Today: Threshold for distance-3 codes

Distance-2 code threshold

- Knill (2005) has highest threshold estimate ~5%
 - ... Albeit with large constant overhead (1-3% more reasonable)
 - Again, no threshold has been proved to exist
- Gaps between proven and estimated thresholds
 - Estimates are as high as ~5%
 - But no proven lower-bounds (?)
 - Aliferis-Gottesman-Preskill (2005): 2.6 x 10⁻⁵

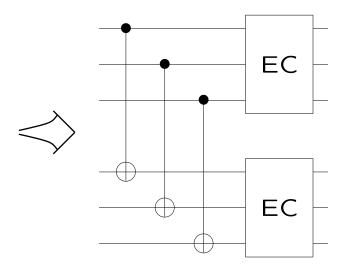
- Caveat on small versus large codes
 - Steane (2003) found 23-qubit Golay code had higher threshold (based on simulations), particularly with slow measurements
 - 23-qubit Golay code proven: 10⁻⁴

Fault-tolerance for m-bit repetition code

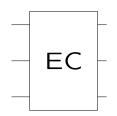
Encoding

$$\begin{array}{c} -0 \rightarrow 00...0 \\ -1 \rightarrow 11...1 \end{array}$$
 distance m

■ Gate compilation rule: transverse, followed by error correction



Error correction:



e.g., classically, with majority gate and fan-out:

Concatenation...
$$0_k = 0_{k-1}0_{k-1}0_{k-1} = \cdots = 0^{3^k}$$

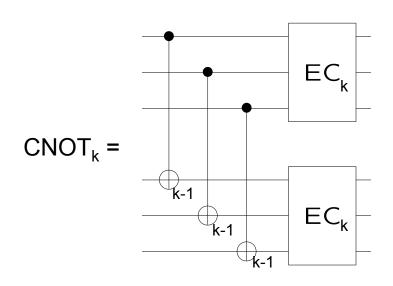
$$1_k = 1_{k-1} 1_{k-1} 1_{k-1} = \dots = 1^{3^k}$$

Classical fault-tolerance for repetition code

Concatenation:

$$0_k = 0_{k-1}0_{k-1}0_{k-1} = \dots = 0^{3^k}$$

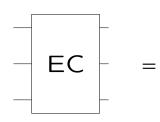
 $1_k = 1_{k-1}1_{k-1}1_{k-1} = \dots = 1^{3^k}$

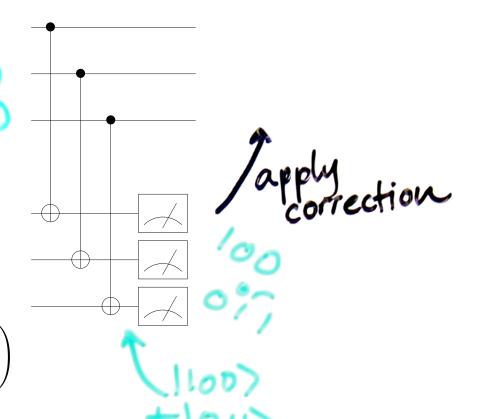


$$= \underbrace{\begin{array}{c} MAJ_k \\ MAJ_k \\ MAJ_k \end{array}}$$

Quantum fault-tolerance for repetition code

Error correction



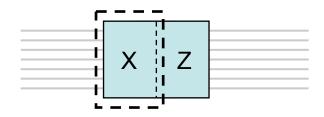


$$\frac{1}{\sqrt{2}} \left(\begin{array}{c} |000\rangle \\ + |111\rangle \end{array} \right)$$

Ancilla preparation and verification

$$|+\rangle$$
 $|0\rangle$
 $|+\rangle_L$
 $|0\rangle$

Quantum fault-tolerance scheme



Def: CNOT

a

a

a

b

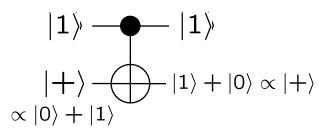
a

b

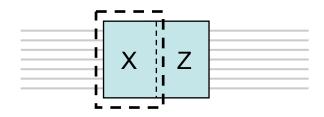
a

b

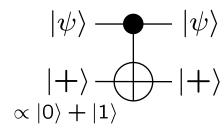
Fact 1:

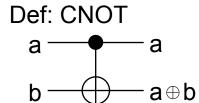


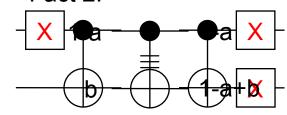
Quantum fault-tolerance scheme



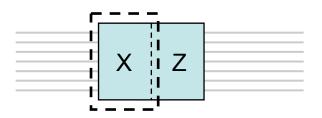
Fact 1:



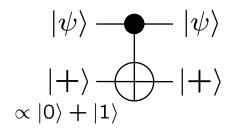


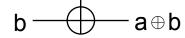


Quantum fault-tolerance scheme

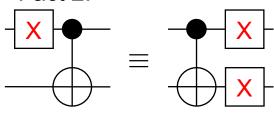


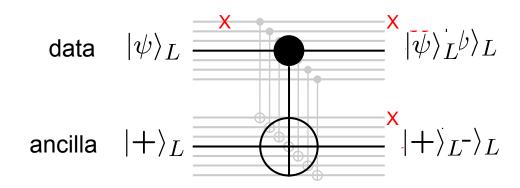
Fact 1:





Fact 2:



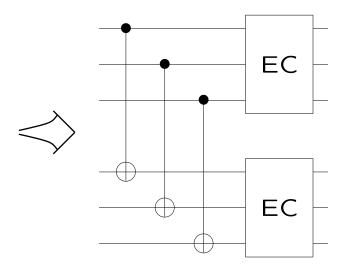


Fault-tolerance for m-bit repetition code

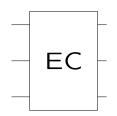
Encoding

$$\begin{array}{c} -0 \rightarrow 00...0 \\ -1 \rightarrow 11...1 \end{array}$$
 distance m

■ Gate compilation rule: transverse, followed by error correction



Error correction:

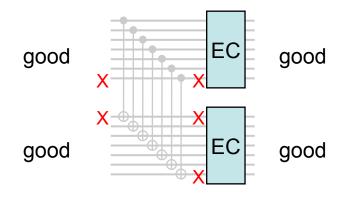


e.g., classically, with majority gate and fan-out:

Concatenation...
$$0_k = 0_{k-1}0_{k-1}0_{k-1} = \cdots = 0^{3^k}$$

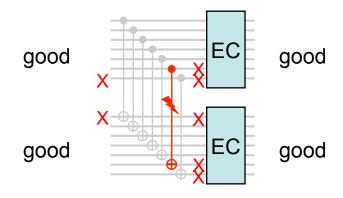
$$1_k = 1_{k-1} 1_{k-1} 1_{k-1} = \dots = 1^{3^k}$$

■ **Idea:** Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")



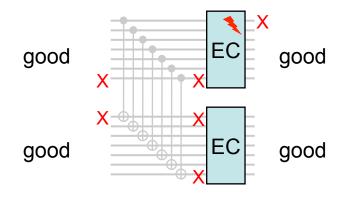
(assuming no level k-1 errors, m≥5)

■ **Idea:** Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")



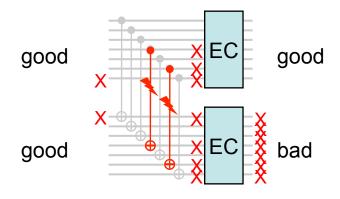
(assuming one level k-1 error, m≥7)

■ **Idea:** Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")



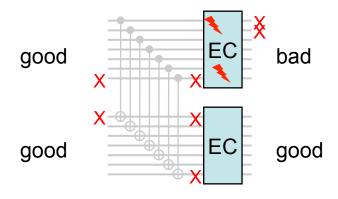
(assuming one level k-1 error, m≥7)

■ **Idea:** Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")



(two level k-1 errors, m=7)

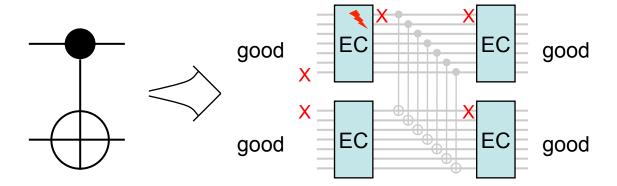
■ **Idea:** Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")



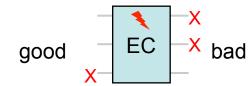
(two level k-1 errors)

■ **Idea:** Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")

For distance-5 code:



- **Idea:** Maintain inductive invariant of (1-)goodness. (A block is good "if it has at most one bad subblock.")
- Why not for distance-three codes?



(one level k-1 error is already too many)

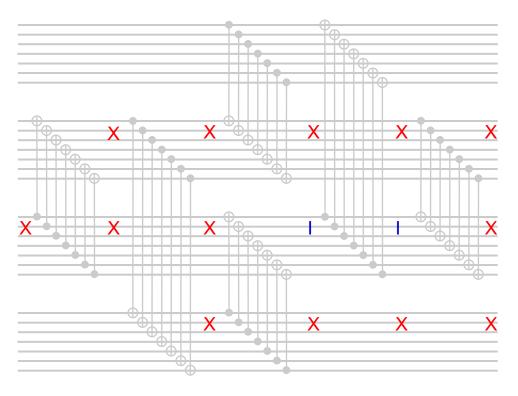
■ **New idea:** Most blocks should have no bad subblocks. Maintain inductive invariant of a controlled probability distribution of errors: "wellness." (A block is well "if it only rarely has a bad subblock.")

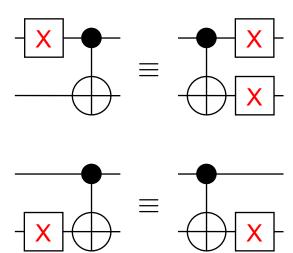
Concatenated distance-3 code proof overview

- Def: Error states
- Def: Relative error states
- Def: 1-good block
- Aharonov/Ben-Or threshold setup
- Def: Logical failure
- Aharonov/Ben-Or threshold proof
- Def: "well" block
- Distance-3 code threshold setup and proof for stabilizer operations
- Extension to universality via magic states distillation

Def: Error states

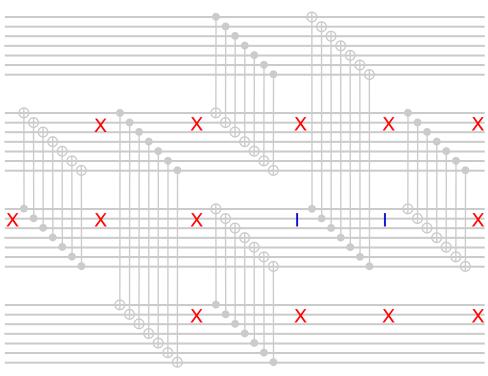
■ Tracking errors



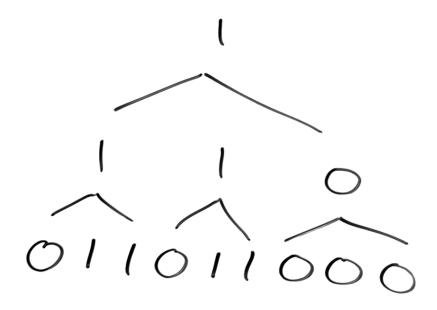


Def: Error states

Tracking errors



■ Block error states: ideal recursive decoding

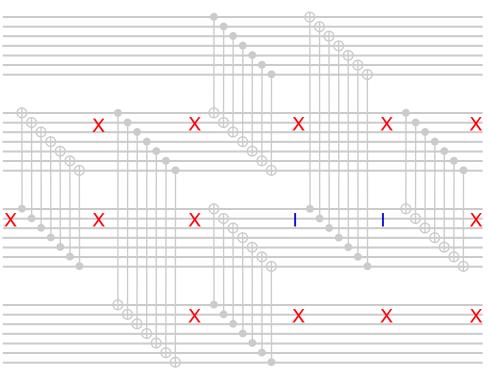


Note: Block errors do not follow same rules as bit errors

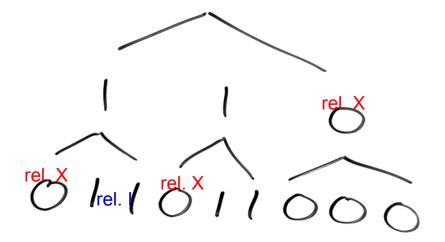
$$-$$
 e.g., 001 + 010 = 011

Def: Relative Error states

Tracking errors

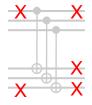


- Block error states: ideal recursive decoding
- Relative error states



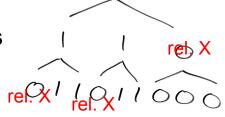
- Note: relative state is relative to state of superblock, not superblock's relative state
- We can measure block relative states.

Def: good



Block error states: ideal recursive decoding

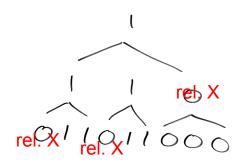
Relative error states

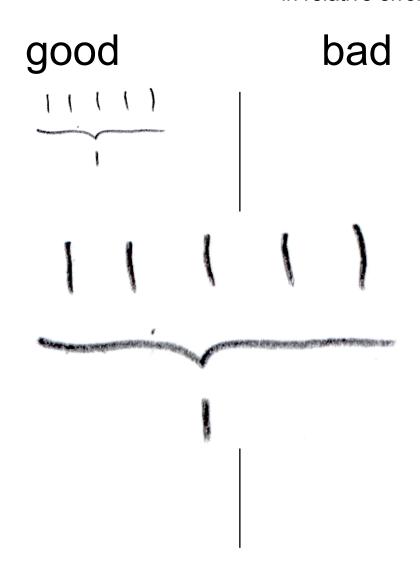


■ **Def:** A block_k is relative (1-)good_k if it has at most one subblock_{k-1} either in relative error or not relative good_{k-1} itself. (Every bit [\equiv block₀] is relative good₀.)

good examples

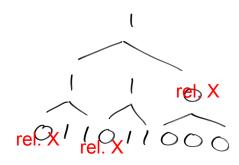
- Relative error states based on ideal recursive decoding
- A **good** block has at most one subblock either in relative error or bad.

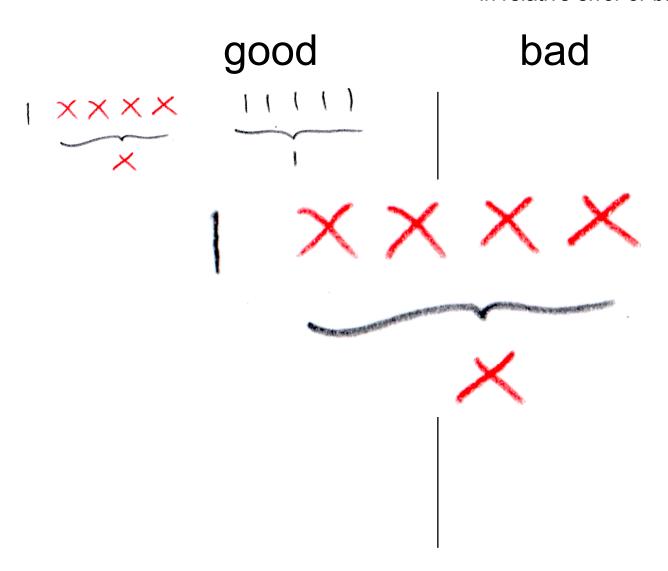




good examples

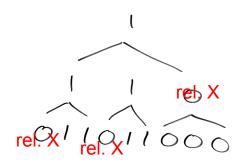
- Relative error states based on ideal recursive decoding
- A **good** block has at most one subblock either in relative error or bad.

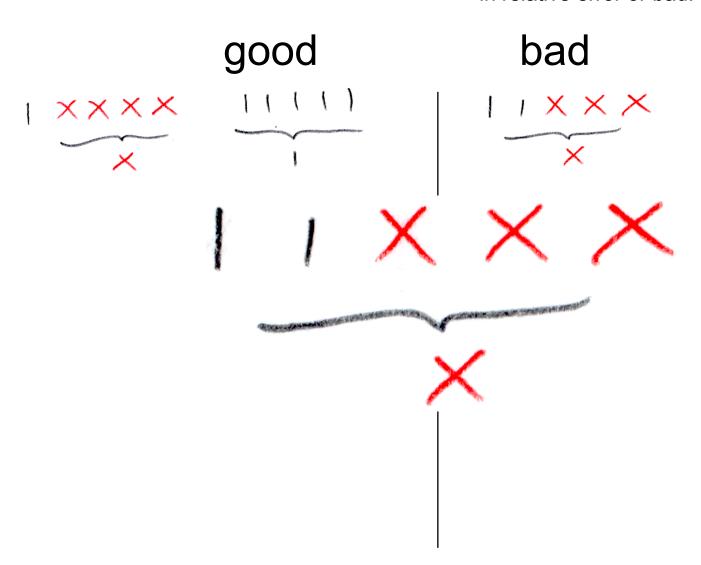


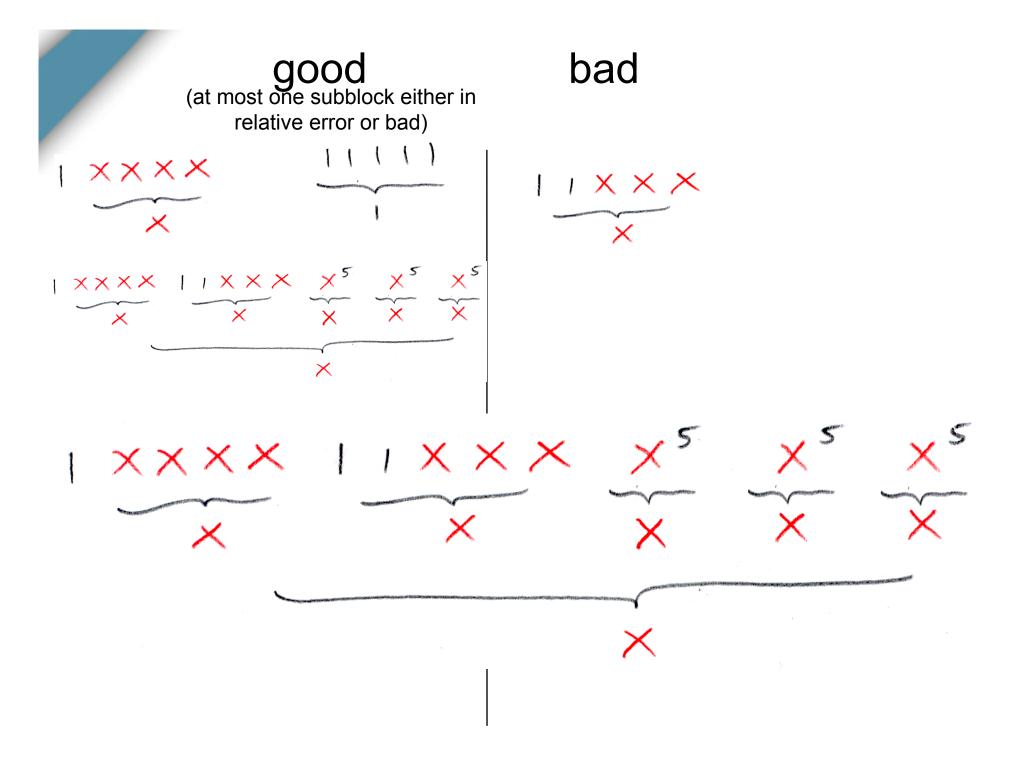


good examples

- Relative error states based on ideal recursive decoding
- A **good** block has at most one subblock either in relative error or bad.



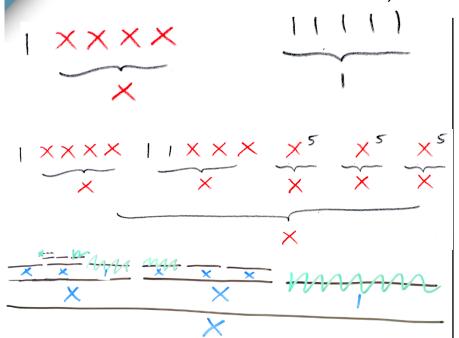




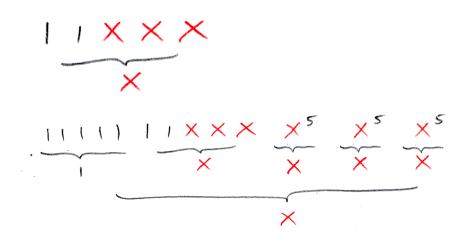
bad **GOOD** (at most one subblock either in relative error or bad) $\times \times \times \times$ $I \mid I \times X \times X$ 111111XXXX

bad **good** (at most one subblock either in relative error or bad) $\times \times \times \times$ $1 \times \times \times$

good (at most one subblock either in relative error or bad)



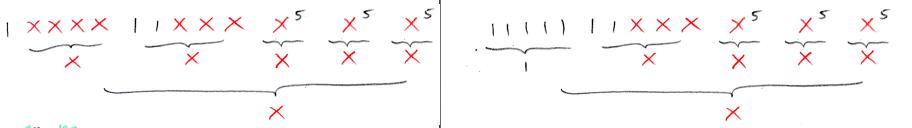
bad

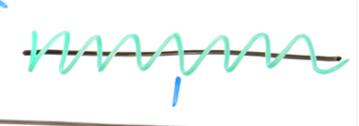


good (at most one subblock either in relative error or bad)

bad

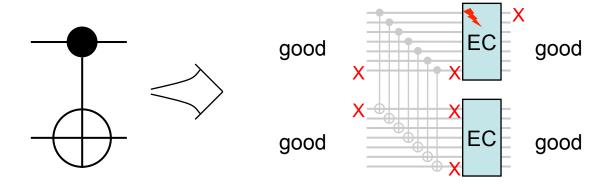
 $\times \times \times \times$





Aharonov/Ben-Or threshold setup

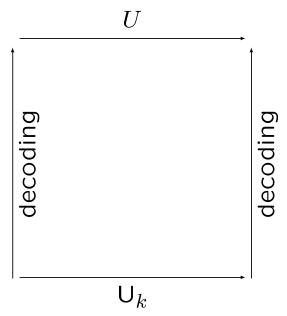
- Base noise model: CNOT₀ gates fail, giving X errors, independently w/ prob. p.
- Claim C_k (CNOT_k): On success:
 - If the input blocks are good_k, then the output blocks are good_k, and a logical CNOT is applied.
- On arbitrary inputs, the output blocks_k are $good_k$ and a possibly incorrect logical effect is applied. The failure probability is at most C_k ($C_0 = p$).



(one level k-1 error, $d \ge 7$)

Def: Logical failure

■ **Def:** Logical operation U_k on one or more blocks $_k$ has the correct logical effect if the diagram commutes:

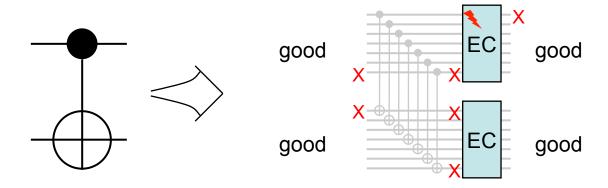


lacksquare U_k has a possibly incorrect logical effect if the same diagram commutes but with $P\circ U$ on the top arrow, where P is a Pauli operator or Pauli product on the involved blocks.

Aharonov/Ben-Or threshold setup

- Claim C_k (CNOT_k): On success:
 - If the input blocks are good_k, then the output blocks are good_k, and a logical CNOT, the correct logical effect, is applied.
 - On arbitrary inputs, the output blocks_k are good_k and a possibly incorrect logical effect is applied.

The failure probability is at most C_k ($C_0 = p$).



- Claim B_k (Correction_k): On success:
 - If the input block is good, then the output block is good and no logical effect is applied.
 - On arbitrary input, the output block is good.

The failure probability is at most B_k ($B_0 = 0$).

Aharonov/Ben-Or threshold proof

Two operations:

- Error correction B.
- c. (Logical) CNOT gate

Two indexed claims:

- B_k Error correction_k
- C_k CNOT_k

- success except w/ prob. $\leq B_k$ success except w/ prob. $\leq C_k$
- **Proofs by induction:** Implications:

$$k-1 \xrightarrow{} k$$

$$k-1 \longrightarrow k$$
 $B_k = O\left((B_{k-1} + C_{k-1})^2\right)$

$$k-1 \longrightarrow k$$

$$C_k = O\left(B_k + C_{k-1}^2\right)$$

Base noise model: CNOT₀ gates fail with X errors independently w/ prob. p

$$B_0 = 0 \qquad C_0 = p$$

$$C_0 = p$$

Proof overview

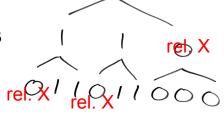
- Def: Error states
- Def: Relative error states
- Def: 1-good block
- Aharonov/Ben-Or threshold setup
- Def: Logical failure
- Aharonov/Ben-Or threshold proof
- Def: "well" block
- Distance-3 code threshold setup and proof for stabilizer operations
- Extension to universality via magic states distillation

Def: well



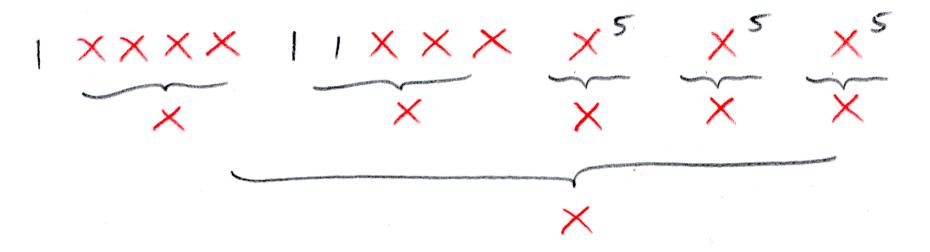
Block error states: ideal recursive decoding

Relative error states



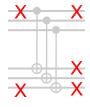
■ **Def:** A block_k is relative (gb-) whelf_k (tphas ant_k) midsthanseas unbost conquestible lock replationer incommendation and the state of all bits in other blocks, is $\leq p_k$.

(Every bit $[\equiv block_0]$ is relative well₀.)



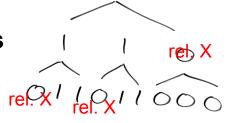
Def: well

Tracking errors



Block error states: ideal recursive decoding

Relative error states



■ **Def:** A block_k is relative (1-)well_k($p_1,...,p_k$) if it has at most one subblock_{k-1} either in relative error or not relative well_{k-1}($p_1,...,p_{k-1}$) itself.

Additionally, the probability of such a subblock, conditioned on the block's state and the state of all bits in other blocks, is $\leq p_k$. (Every bit [\equiv block₀] is relative well₀.)

■ **Note:** Conditioned on block's state, e.g.,

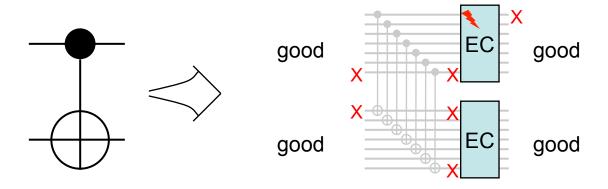


is not 1-well.

Aharonov/Ben-Or threshold setup

- Claim C_k (CNOT_k): On success:
 - If the input blocks are good_k, then the output blocks are good_k, and a logical CNOT, the correct logical effect, is applied.
 - On arbitrary inputs, the output blocks_k are good_k and a possibly incorrect logical effect is applied.

The failure probability is at most C_k ($C_0 = p$).



- Claim B_k (Correction_k): On success:
 - If the input blocks is good, then the output block is good and no logical effect is applied.
 - On arbitrary input, the output block is good.

The failure probability is at most B_k ($B_0 = 0$).

Aharonov/Ben-Or threshold setup

Two operations:

- Error correction B.
- c. (Logical) CNOT gate

Two indexed claims:

- B_k Error correction_k
- C_k CNOT_k

success except w/ prob. $\leq B_k$ success except w/ prob. $\leq C_k$

Proofs by induction: Implications:

$$k-1$$
 k

$$k-1 \longrightarrow k$$
 $B_k = O\left((B_{k-1} + C_{k-1})^2\right)$

$$k-1 \longrightarrow k$$

$$C_k = O\left(B_k + C_{k-1}^2\right)$$

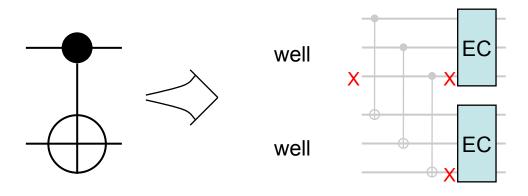
Base noise model: CNOT₀ gates fail with X errors independently w/ prob. p

$$B_0 = 0$$
 $C_0 = p$

$$C_0 = p$$

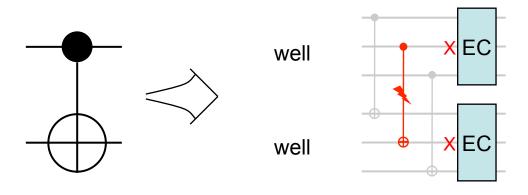
- Claim C_k (CNOT_k): On success:
 - If the input blocks are $well_k(b_1,...,b_k)$, then the output blocks are $well_k(b_1,...,b_k)$, and a logical CNOT is applied.
 - On arbitrary inputs, the output blocks_k are $well_k(b_1,...,b_k)$ and a possibly incorrect logical effect is applied.

The failure probability is at most C_k ($C_0 = p$).



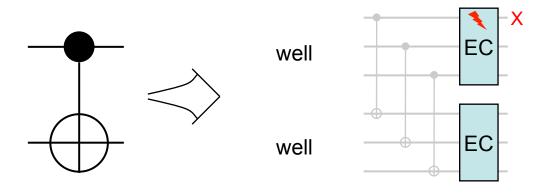
- Claim C_k (CNOT_k): On success:
 - If the input blocks are $well_k(b_1,...,b_k)$, then the output blocks are $well_k(b_1,...,b_k)$, and a logical CNOT is applied.
 - On arbitrary inputs, the output blocks_k are $well_k(b_1,...,b_k)$ and a possibly incorrect logical effect is applied.

The failure probability is at most C_k ($C_0 = p$).



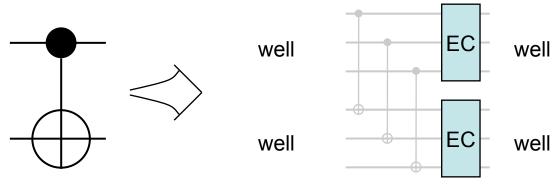
- Claim C_k (CNOT_k): On success:
 - If the input blocks are $well_k(b_1,...,b_k)$, then the output blocks are $well_k(b_1,...,b_k)$, and a logical CNOT is applied.
 - On arbitrary inputs, the output blocks_k are $well_k(b_1,...,b_k)$ and a possibly incorrect logical effect is applied.

The failure probability is at most C_k ($C_0 = p$).



- Claim C_k (CNOT_k): On success:
 - If the input blocks are $well_k(b_1,...,b_k)$, then the output blocks are $well_k(b_1,...,b_k)$, and a logical CNOT is applied.
 - On arbitrary inputs, the output blocks_k are $well_k(b_1,...,b_k)$ and a possibly incorrect logical effect is applied.

The failure probability is at most C_k ($C_0 = p$).



- Claim B_k (Correction_k): On success:
 - If the input block is $well_k(b_1,...,b_k)$, then the output block is $well_k(b_1,...,b_k)$ and no logical effect is applied.
 - On arbitrary input, the output block is well_k(b₁,...,b_k).

The failure probability is at most B_k ($B_0 = 0$).

Additionally, if all but one of the input subblocks_{k-1} are well_{k-1}($b_1,...,b_{k-1}$), then with probability at least 1-B_k' there is no logical effect and the output is well_k($b_1,...,b_k$).

Dist 3 threshold proof

■ Claim $\mathbf{B_k}$ (Correction_k): With probability at least $1 - B_k$ the output block_k is well_k($b_1,...,b_k$) and, if the input is well_k($b_1,...,b_k$), there is no logical effect.

Additionally, if all but one of the input subblocks_{k-1} are well_{k-1}(b₁,...,b_{k-1}), then with probability at least $1 - B'_k$ there is no logical effect and the output is well_k(b₁,...,b_k).

Correction_k proof:
$$-\boxed{EC_k}$$
 = \boxed{R} $\boxed{$

Declare success if Ancillas_k both succeed & at most one level k-1 failure.

$$B_k \equiv 2A_k + (b_k + 2a_k + 2nB_{k-1} + 2nC_{k-1})^2$$

$$B'_k \equiv 2A_k + 2a_k + 2nB_{k-1} + 2nC_{k-1}$$

$$b_k \equiv (2a_k + 2nB_{k-1} + 2nC_{k-1})/(1 - B'_k)$$

Proof is mostly similar to Aharonov/Ben-Or proof, with one exception...

Dist 3 threshold proof

■ Claim B_k (Correction_k): With probability at least $1 - B_k$ the output block_k is well_k($b_1,...,b_k$) and, if the input is well_k($b_1,...,b_k$), there is no logical effect.

Additionally, if all but one of the input subblocks_{k-1} are well_{k-1}(b₁,...,b_{k-1}), then with probability at least $1 - B'_k$ there is no logical effect and the output is well_k(b₁,...,b_k).

Correction_k proof:
$$-\boxed{EC_k}$$
 = $\boxed{EC_k}$ | $\boxed{EC_k}$

Proof is mostly similar to Aharonov/Ben-Or proof, with one exception... Why are two syndrome extractions necessary?

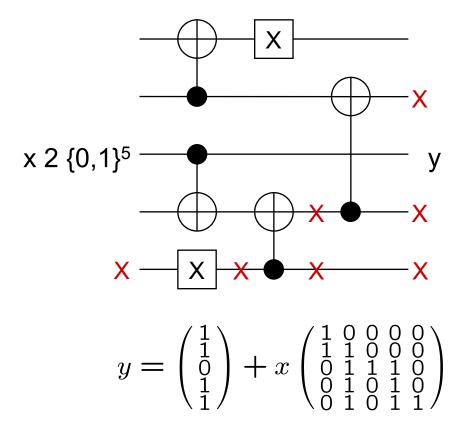
Stabilizer operations

Def: Stabilizer operations are

Clifford group unitaries

$$\left\langle H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, K = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \mathsf{CNOT} \right\rangle$$

- Preparation of $|0\rangle$, $|1\rangle$
- Measurement in $|0\rangle$, $|1\rangle$



Gottesman-Knill Theorem: Stabilizer operations are efficiently classically simulable.

Universality from stabilizer operations & repeated preparation of $\cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} |1\rangle$

Def: Stabilizer operations are

Clifford group unitaries

$$\left\langle H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, K = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \mathsf{CNOT} \right\rangle$$

- Preparation of $|0\rangle$, $|1\rangle$
- Measurement in $|0\rangle$, $|1\rangle$

Theorem: [Shi'02] CNOT + any singlequbit gate not in Clifford group gives quantum universality.

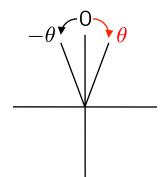
Fact 1: Stab ops + prepare
$$|\psi\rangle = \frac{\cos\frac{\theta}{2}|0\rangle}{+\sin\frac{\theta}{2}|1\rangle}$$
! universality. (if $\theta \neq k \pi/2$)

Proof: How to apply
$$U = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

$$(\alpha|0\rangle + \beta|1\rangle) (|0\rangle + e^{i\theta}|1\rangle)$$

$$= \alpha|00\rangle + \beta e^{i\theta}|11\rangle$$

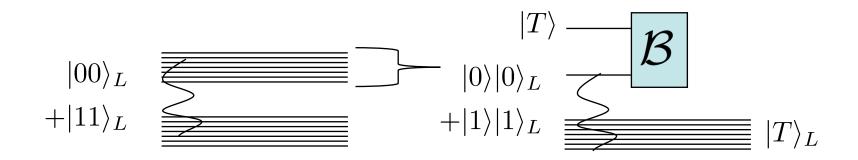
$$+ \alpha e^{i\theta}|01\rangle + \beta|10\rangle$$



Application

Theorem: [Shi'02] CNOT + any singlequbit gate not in Clifford group gives quantum universality.

Fact 1: Stab ops + prepare
$$\cos \frac{\theta}{2} |0\rangle$$
 ! universality.



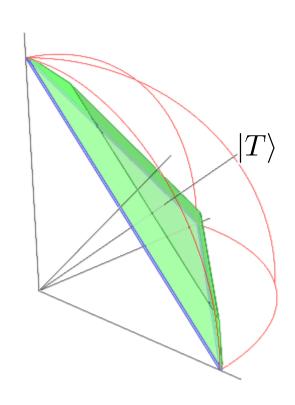
Stabilizer op.

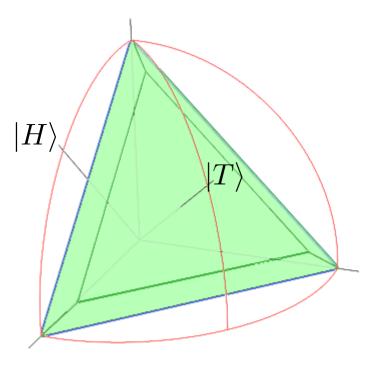
fault-tolerance

Universal
fault-tolerance

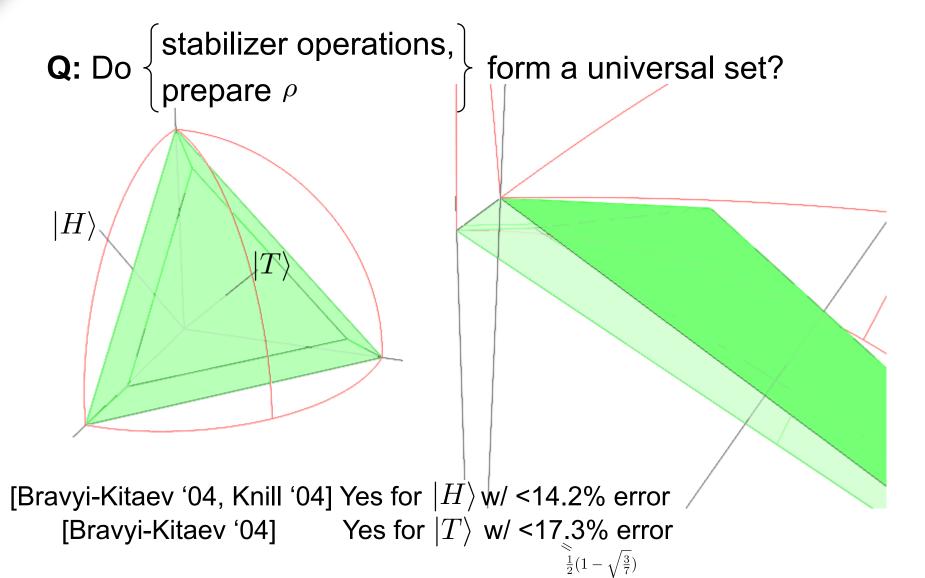
Q: Do $\left\{ \begin{array}{l} \text{stabilizer operations,} \\ \text{prepare } \rho \end{array} \right\}$

form a universal set?





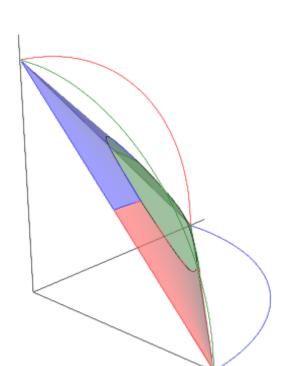
[Bravyi-Kitaev '04, Knill '04] Yes for $|H\rangle$ w/ <14.2% error [Bravyi-Kitaev '04] Yes for $|T\rangle$ w/ <17.3% error $\frac{1}{2}(1-\sqrt{\frac{3}{7}})$

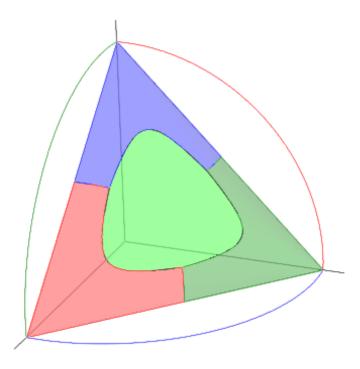


Theorem: [R '04] Yes for
$$|H\rangle$$
 w/ <14.6% error $\frac{1}{2}(1-\frac{1}{\sqrt{2}})$

Q: Do
$$\left\{ \begin{array}{l} \text{stabilizer operations,} \\ \text{prepare } \rho \end{array} \right\}$$

form a universal set?





[Bravyi-Kitaev '04, Knill '04] Yes for $|H\rangle$ w/ <14.2% error [Bravyi-Kitaev '04] Yes for $|T\rangle$ w/ <17.3% error $\frac{1}{2}(1-\sqrt{\frac{3}{7}})$

Theorem: [R '04] Yes for $|H\rangle$ w/ <14.6% error $\frac{1}{2}(1-\frac{1}{\sqrt{2}})$

Conclusion

Proof overview:

- Def: Error states
- Def: Relative error states
- Def: 1-good block
- Aharonov/Ben-Or threshold setup
- Def: Logical failure
- Aharonov/Ben-Or threshold proof
- Def: "well" block
- Distance 3 code threshold setup and proof for stabilizer operations
- Extension to universality via magic states distillation

Open questions:

- Optimize proof for improving provable threshold
- Prove threshold for postselection-based fault-tolerance scheme
 - also for specialized error models
- Prove upper/lower bounds on magic states distillation, improve efficiency...