
 Fault-tolerance threshold for a
distance-three quantum code!

Ben Reichardt
UC Berkeley

N gate circuit

0/1

N gate circuit

0/1

Need error 1/N

Quantum fault-tolerance problem

0/1
Larger, fault-tolerant

C

•  Classical fault-tolerance: Von Neumann (1956)

Intuition
  Work on encoded data

•  Quantum fault-tolerance: Shor (1996)

Intuition
  Work on encoded data

•  Quantum fault-tolerance: Shor (1996)

Intuition
  Work on encoded data
  Correct errors to prevent spread

•  Quantum fault-tolerance: Shor (1996)

Intuition
  Work on encoded data
  Correct errors to prevent spread

•  Quantum fault-tolerance: Shor (1996)
–  Using a poly(log N)-sized code, tolerate 1/poly(log N) gate error

Intuition
  Work on encoded data
  Correct errors to prevent spread
  Concatenate procedure for arbitrary reliability

•  Shor (1996): poly(log N)-sized code to tolerate 1/poly(log N) gate error
•  Aharonov & Ben-Or (1997), Kitaev (1997),
 Gotteman-Evslin-Kakade-Preskill (1997), Knill-Laflamme-Zurek (1997)

~p(t+1)2

p(t+1)3

p

c pt+1

Probability
of error

1

Physical bits
per logical bit

m

m2

m3

O(log log N) concatenations
poly(log N) physical bits / logical

•  N gate circuit
Want error 1/N

1/c1/t

•  m-qubit, t-error correcting code

Threshold from concatenation
0.0050.010.0150.020.0250.0050.010.0150.020.025

Physical gate error rate p

Lo
gi

ca
l g

at
e

er
ro

r r
at

e

p

c pt+1

  Basic estimates
–  Aharonov & Ben-Or (1997)
–  Knill-Laflamme-Zurek (1998)
–  Preskill (1998)
–  Gottesman (1997)

  Optimized estimates
–  Zalka (1997)
–  Reichardt (2004)
–  Svore-Cross-Chuang-Aho (2005)

  2-dimensional locality constraint
–  Szkopek et al (2004)
–  Svore-Terhal-DiVincenzo (2005)

Distance-3 code thresholds

  But no constant threshold was even proven to exist for distance-3 codes!
–  Aharonov & Ben-Or proof only works for codes of distance at least 5

  Today: Threshold for distance-3 codes

  Knill (2005) has highest threshold estimate ~5%
–  … Albeit with large constant overhead (1-3% more reasonable)
–  Again, no threshold has been proved to exist

  Gaps between proven and estimated thresholds
–  Estimates are as high as ~5%
–  But no proven lower-bounds (?)
–  Aliferis-Gottesman-Preskill (2005): 2.6 x 10-5

Distance-2 code threshold

  Caveat on small versus large codes
–  Steane (2003) found 23-qubit Golay code had higher threshold (based
on simulations), particularly with slow measurements
–  23-qubit Golay code proven: 10-4

Fault-tolerance for m-bit repetition code

  Encoding
- 0 → 00…0
- 1 → 11…1

  Gate compilation rule: transverse,
followed by error correction

- e.g., CNOTL

  Error correction:

–  e.g., classically, with majority gate
and fan-out:

 Concatenation…

=

distance m

  Concatenation:

CNOTk =

k-1
k-1

k-1
k

k = k
k
k
k

k = k-1
k-1
k-1
k-1

Classical fault-tolerance for repetition code

  Error correction

  Ancilla preparation and verification

=

=

Quantum fault-tolerance for repetition code

Quantum fault-tolerance scheme

EC a

b

a

a b

Def: CNOT

Fact 1:

X Z

Quantum fault-tolerance scheme

X X

X

X Z
a

b

a

a b

Def: CNOT

Fact 1: Fact 2:
1-a

b

1-a

1-a+b

Quantum fault-tolerance scheme

X X

X

X Z
a

b

a

a b

Def: CNOT

Fact 1: Fact 2:

data

ancilla

X

X

X

Fault-tolerance for m-bit repetition code

  Encoding
- 0 → 00…0
- 1 → 11…1

  Gate compilation rule: transverse,
followed by error correction

- e.g., CNOTL

  Error correction:

–  e.g., classically, with majority gate
and fan-out:

 Concatenation…

=

distance m

Aharonov & Ben-Or threshold proof intuition

  Idea: Maintain inductive invariant of (1-)goodness. (A block is good “if it has
at most one bad subblock.”)

EC

EC
X

X X

X

X

good

good

good

good

(assuming no level k-1 errors, m≥5)

Aharonov & Ben-Or threshold proof intuition

  Idea: Maintain inductive invariant of (1-)goodness. (A block is good “if it has
at most one bad subblock.”)

EC

EC
X

X
good

good

good

good

(assuming one level k-1 error, m≥7)

X

X

X

X

X

Aharonov & Ben-Or threshold proof intuition

  Idea: Maintain inductive invariant of (1-)goodness. (A block is good “if it has
at most one bad subblock.”)

EC

EC
X

X
good

good

good

good

(assuming one level k-1 error, m≥7)

X

X

X

X

Aharonov & Ben-Or threshold proof intuition

  Idea: Maintain inductive invariant of (1-)goodness. (A block is good “if it has
at most one bad subblock.”)

EC

EC
X

X
good

good

good

bad

(two level k-1 errors, m=7)

X

X

X

X
X

X
X

X

X

X
X X
X X

Aharonov & Ben-Or threshold proof intuition

  Idea: Maintain inductive invariant of (1-)goodness. (A block is good “if it has
at most one bad subblock.”)

EC

EC
X

X
good

good

bad

good

(two level k-1 errors)

X

X

X

X X

Aharonov & Ben-Or threshold proof intuition

  Idea: Maintain inductive invariant of (1-)goodness. (A block is good “if it has
at most one bad subblock.”)

EC

EC

For distance-5 code:

EC

EC
X

X
good

good

good

good

X

X

X

Aharonov & Ben-Or threshold proof intuition

  Idea: Maintain inductive invariant of (1-)goodness. (A block is good “if it has
at most one bad subblock.”)
  Why not for distance-three codes?

EC
X

good bad
X
X

  New idea: Most blocks should have no bad subblocks. Maintain inductive
invariant of a controlled probability distribution of errors: “wellness.” (A block is
well “if it only rarely has a bad subblock.”)

(one level k-1 error is already too many)

EC
X

Concatenated distance-3 code proof overview

  Def: Error states
  Def: Relative error states
  Def: 1-good block
  Aharonov/Ben-Or threshold setup
  Def: Logical failure
  Aharonov/Ben-Or threshold proof
  Def: “well” block
  Distance-3 code threshold setup and proof for stabilizer operations

  Extension to universality via magic states distillation

Def: Error states
  Tracking errors

X X

X X

X

X X

X X

X X

X

X

I I

X X

X

X X

Def: Error states
  Tracking errors   Block error states: ideal recursive

decoding

  Note: Block errors do not follow same
rules as bit errors

-  e.g., 001 + 010 = 011

X X

X X

X

X X

X X

X X

X

X

I I

Def: Relative Error states
  Tracking errors   Block error states: ideal recursive

decoding

  Note: relative state is relative to state
of superblock, not superblock’s relative
state
  We can measure block relative states.

X X

X X

X

X X

X X

X X

X

X

I I

  Relative error states

rel. X rel. X
rel. I

rel. X

Def: good
  Tracking errors   Block error states: ideal recursive decoding

  Relative error states

rel. X rel. X

rel. X

X X

X
X X

  Def: A blockk is relative (1-)goodk if it has at most one subblockk-1 either in
relative error or not relative goodk-1 itself.
(Every bit [≡ block0] is relative good0.)

good examples   A good block has at
most one subblock either
in relative error or bad.

  Relative error states
based on ideal recursive
decoding

rel. X rel. X

rel. X

good bad

good examples   A good block has at
most one subblock either
in relative error or bad.

  Relative error states
based on ideal recursive
decoding

rel. X rel. X

rel. X

good bad

good examples   A good block has at
most one subblock either
in relative error or bad.

  Relative error states
based on ideal recursive
decoding

rel. X rel. X

rel. X

good bad

(at most one subblock either in
relative error or bad)

good bad

(at most one subblock either in
relative error or bad)

good bad

(at most one subblock either in
relative error or bad)

good bad

(at most one subblock either in
relative error or bad)

good bad

(at most one subblock either in
relative error or bad)

good bad

Aharonov/Ben-Or threshold setup

  Claim Ck (CNOTk): On success:
–  If the input blocks are goodk, then
the output blocks are goodk, and a logical CNOT is applied.
–  On arbitrary inputs, the
output blocksk are goodk and a possibly incorrect logical effect is applied.

 The failure probability is at most Ck (C0 = p).

EC

EC
X

X
good

good

good

good

(one level k-1 error, d ≥ 7)

X

X

X

X

  Base noise model: CNOT0 gates fail, giving X errors, independently w/ prob. p.

Def: Logical failure
  Def: Logical operation Uk on one or more blocksk has the correct logical
effect if the diagram commutes:

  Uk has a possibly incorrect logical effect if the same diagram commutes but
with on the top arrow, where P is a Pauli operator or Pauli product on
the involved blocks.

Aharonov/Ben-Or threshold setup
  Claim Ck (CNOTk): On success:

–  If the input blocks are goodk, then the output blocks are goodk, and a logical
CNOT, the correct logical effect, is applied.
–  On arbitrary inputs, the output blocksk are goodk and a possibly incorrect
logical effect is applied.

 The failure probability is at most Ck (C0 = p).

  Claim Bk (Correctionk): On success:
–  If the input block is good, then the output block is good and no logical
effect is applied.
–  On arbitrary input, the output block is good.

 The failure probability is at most Bk (B0 = 0).

EC

EC
X

X
good

good

good

good

X

X

X

X

  Two operations:
A. 
B.  Error correction
C.  (Logical) CNOT gate

  Proofs by induction: Implications:

k
k
k

  Two indexed claims:
A. 
B.  Error correctionk
C.  CNOTk

success except w/ prob.
success except w/ prob.

Aharonov/Ben-Or threshold proof

  Base noise model: CNOT0 gates fail with X errors independently w/ prob. p

Proof overview

  Def: Error states
  Def: Relative error states
  Def: 1-good block
  Aharonov/Ben-Or threshold setup
  Def: Logical failure
  Aharonov/Ben-Or threshold proof
  Def: “well” block
  Distance-3 code threshold setup and proof for stabilizer operations

  Extension to universality via magic states distillation

  Def: A blockk is relative (1-)wellk(p1,…,pk) if it has at most one subblockk-1 either
in relative error or not relative wellk-1(p1,…,pk-1) itself.
 Additionally, the probability of such a subblock, conditioned on the block’s state
and the state of all bits in other blocks, is ≤ pk.
(Every bit [≡ block0] is relative well0.)

Def: well
  Tracking errors   Block error states: ideal recursive decoding

  Relative error states

rel. X rel. X

rel. X

X X

X
X X

  Def: A blockk is relative goodk if it has at most one subblockk-1 either in relative
error or not relative goodk-1 itself.
(Every bit [≡ block0] is relative good0.)

  Def: A blockk is relative (1-)wellk(p1,…,pk) if it has at most one subblockk-1 either
in relative error or not relative wellk-1(p1,…,pk-1) itself.
 Additionally, the probability of such a subblock, conditioned on the block’s state
and the state of all bits in other blocks, is ≤ pk.
(Every bit [≡ block0] is relative well0.)

Def: well
  Tracking errors   Block error states: ideal recursive decoding

  Relative error states

rel. X rel. X

rel. X

X X

X
X X

  Note: Conditioned on block’s state, e.g.,

 is not 1-well.
w/prob. 1-pk w/prob. pk

Aharonov/Ben-Or threshold setup
  Claim Ck (CNOTk): On success:

–  If the input blocks are goodk, then the output blocks are goodk, and a logical
CNOT, the correct logical effect, is applied.
–  On arbitrary inputs, the output blocksk are goodk and a possibly incorrect
logical effect is applied.

 The failure probability is at most Ck (C0 = p).

  Claim Bk (Correctionk): On success:
–  If the input blocks is good, then the output block is good and no logical
effect is applied.
–  On arbitrary input, the output block is good.

 The failure probability is at most Bk (B0 = 0).

EC

EC
X

X
good

good

good

good

X

X

X

X

  Two operations:
A. 
B.  Error correction
C.  (Logical) CNOT gate

  Proofs by induction: Implications:

k
k
k

  Two indexed claims:
A. 
B.  Error correctionk
C.  CNOTk

success except w/ prob.
success except w/ prob.

Aharonov/Ben-Or threshold setup

  Base noise model: CNOT0 gates fail with X errors independently w/ prob. p

Dist 3 code setup
  Claim Ck (CNOTk): On success:

–  If the input blocks are wellk(b1,…,bk), then the output blocks are wellk(b1,
…,bk), and a logical CNOT is applied.
–  On arbitrary inputs, the output blocksk are wellk(b1,…,bk) and a possibly
incorrect logical effect is applied.

 The failure probability is at most Ck (C0 = p).

EC

EC

well

well

X X

X

Dist 3 code setup
  Claim Ck (CNOTk): On success:

–  If the input blocks are wellk(b1,…,bk), then the output blocks are wellk(b1,
…,bk), and a logical CNOT is applied.
–  On arbitrary inputs, the output blocksk are wellk(b1,…,bk) and a possibly
incorrect logical effect is applied.

 The failure probability is at most Ck (C0 = p).

EC

EC

well

well

X

X

Dist 3 code setup
  Claim Ck (CNOTk): On success:

–  If the input blocks are wellk(b1,…,bk), then the output blocks are wellk(b1,
…,bk), and a logical CNOT is applied.
–  On arbitrary inputs, the output blocksk are wellk(b1,…,bk) and a possibly
incorrect logical effect is applied.

 The failure probability is at most Ck (C0 = p).

EC

EC

well

well

X

Dist 3 code setup
  Claim Ck (CNOTk): On success:

–  If the input blocks are wellk(b1,…,bk), then the output blocks are wellk(b1,
…,bk), and a logical CNOT is applied.
–  On arbitrary inputs, the output blocksk are wellk(b1,…,bk) and a possibly
incorrect logical effect is applied.

 The failure probability is at most Ck (C0 = p).

  Claim Bk (Correctionk): On success:
–  If the input block is wellk(b1,…,bk), then the output block is wellk(b1,…,bk)
and no logical effect is applied.
–  On arbitrary input, the output block is wellk(b1,…,bk).

 The failure probability is at most Bk (B0 = 0).
Additionally, if all but one of the input subblocksk-1 are wellk-1(b1,…,bk-1), then with
probability at least 1-Bk’ there is no logical effect and the output is wellk(b1,…,bk).

EC

EC

well

well

well

well

Declare success if Ancillask both succeed & at most one level k-1 failure.

Dist 3 threshold proof

Correctionk proof:

  Claim Bk (Correctionk): With probability at least , the output blockk is wellk(b1,…,bk)
and, if the input is wellk(b1,…,bk), there is no logical effect.
 Additionally, if all but one of the input subblocksk-1 are wellk-1(b1,…,bk-1), then with probability
at least there is no logical effect and the output is wellk(b1,…,bk).

Proof is mostly similar to Aharonov/Ben-Or proof, with one exception…

Dist 3 threshold proof

Correctionk proof:

Proof is mostly similar to Aharonov/Ben-Or proof, with one exception…
Why are two syndrome extractions necessary?

  Claim Bk (Correctionk): With probability at least , the output blockk is wellk(b1,…,bk)
and, if the input is wellk(b1,…,bk), there is no logical effect.
 Additionally, if all but one of the input subblocksk-1 are wellk-1(b1,…,bk-1), then with probability
at least there is no logical effect and the output is wellk(b1,…,bk).

X

X

x 2 {0,1}5

X

Gottesman-Knill Theorem: Stabilizer
operations are efficiently classically
simulable.

y

Def: Stabilizer operations are
  Clifford group unitaries

  Preparation of
  Measurement in

Stabilizer operations

X X X

X

X

X

Universality from stabilizer operations &
repeated preparation of

Def: Stabilizer operations are
  Clifford group unitaries

  Preparation of
  Measurement in

Theorem: [Shi‘02] CNOT + any single-
qubit gate not in Clifford group gives
quantum universality.

Fact 1: Stab ops + prepare
 ! universality.

(if θ ≠ k π/2)
Proof: How to apply

Application

Universal
fault-tolerance

Stabilizer op.
fault-tolerance

B

Fact 2: Taking two copies of ,
postselecting on even parity,
! universality if .

Theorem: [Shi‘02] CNOT + any single-
qubit gate not in Clifford group gives
quantum universality.

Fact 1: Stab ops + prepare
 ! universality.

Q: Do form a universal set?
stabilizer operations,
prepare	

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for w/ <14.2% error
 [Bravyi-Kitaev ‘04] Yes for w/ <17.3% error

Q: Do form a universal set?
stabilizer operations,
prepare	

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for w/ <14.2% error
 [Bravyi-Kitaev ‘04] Yes for w/ <17.3% error

 Theorem: [R ‘04] Yes for w/ <14.6% error

Q: Do form a universal set?
stabilizer operations,
prepare	

[Bravyi-Kitaev ‘04, Knill ‘04] Yes for w/ <14.2% error
 [Bravyi-Kitaev ‘04] Yes for w/ <17.3% error

 Theorem: [R ‘04] Yes for w/ <14.6% error

Conclusion

  Def: Error states
  Def: Relative error states
  Def: 1-good block
  Aharonov/Ben-Or threshold setup
  Def: Logical failure
  Aharonov/Ben-Or threshold proof
  Def: “well” block
  Distance 3 code threshold setup and proof for stabilizer operations
  Extension to universality via magic states distillation

Proof overview:

  Optimize proof for improving provable threshold
  Prove threshold for postselection-based fault-tolerance scheme

- also for specialized error models
  Prove upper/lower bounds on magic states distillation, improve efficiency…

Open questions:

