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Gottesman-Knill Theorem: Stabilizer 
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Theorem: [R‘05] Stabilizer ops + 
prepare      any pure state not a 
stabilizer state gives quantum 
universality. 

Main theorem 

Application: [Knill‘04] Estimated 
threshold of 5-10%. 

Universal           
fault-tolerance 

Stabilizer op.      
fault-tolerance 

B 



Def: Stabilizer operations are  
  Clifford group unitaries 

  Preparation of  
  Measurement in 

Theorem: [R‘05] Stabilizer ops + 
prepare      any pure state not a 
stabilizer state gives quantum 
universality. 

Proof of theorem 

Lemma: [R‘05] Stabilizer ops + prepare      
any single-qubit pure state not a Pauli 
eigenstate gives quantum universality. 

Fact: Stab ops + prepare  
            ! universality. 

Fact: Stab ops + 
            ! universality. 

Open question: For which (single qubit) 
mixed states ρ does  

    stab ops + prepare ρ ! universality ? 



Bloch sphere 



Theorem: [R‘05] Stabilizer ops + 
prepare      any pure state not a 
stabilizer state gives quantum 
universality. 

“Proof of Fact 2” 

Lemma: [R‘05] Stabilizer ops + prepare      
any single-qubit pure state not a Pauli 
eigenstate gives quantum universality. 

Fact 1: Stab ops + prepare  
            ! universality. 

Fact 2: Stab ops + 
            ! universality. 

Open question: For which (single qubit) 
mixed states ρ does  

    stab ops + prepare ρ ! universality ? 



Theorem: [R‘05] Stabilizer ops + 
prepare      any pure state not a 
stabilizer state gives quantum 
universality. 

Proof of Fact 1 

Lemma: [R‘05] Stabilizer ops + prepare      
any single-qubit pure state not a Pauli 
eigenstate gives quantum universality. 

Fact 1: Stab ops + prepare  
            ! universality. 

Fact 2: Stab ops + 
            ! universality. 

Open question: For which (single qubit) 
mixed states ρ does  

    stab ops + prepare ρ ! universality ? 



Theorem: [R‘05] Stabilizer ops + 
prepare      any pure state not a 
stabilizer state gives quantum 
universality. 

Proof of Lemma 

Lemma: [R‘05] Stabilizer ops + prepare      
any single-qubit pure state not a Pauli 
eigenstate gives quantum universality. 

Fact 1: Stab ops + prepare  
            ! universality. 

Fact 2: Stab ops + 
            ! universality. 

Open question: For which (single qubit) 
mixed states ρ does  

    stab ops + prepare ρ ! universality ? 



Q: Do                                        form a universal set? 
stabilizer operations, 
prepare



Q: Do                                        form a universal set? 
stabilizer operations, 
prepare

Fact: Any mixture of Pauli 
eigenstates (points in 
octahedron) is 
classically simulable. 



Q: Do                                        form a universal set? 
stabilizer operations, 
prepare



Q: Do                                        form a universal set? 
stabilizer operations, 
prepare

Fact: Any mixture of Pauli eigenstates (points in octahedron) is 
classically simulable. 
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Improved distillation procedure 
1. With equal probabilities ½, apply H to    . 
 ) Assume     lies along H axis:                                                   



1. Symmetrize    into                                                                      . 

2. Take 7 copies of    .  Decode according to the [[7,1,3]] Steane/Hamming 
quantum code, rejecting if errors detected. 

Improved distillation procedure 

Steane 

3. Conditioned on acceptance, the output state     is  



Proof of improved distillation procedure 

For a CSS code in which XL = X-n, ZL = Z-n,   

where C is the set of codewords for a classical code. 

Thus                                                           . 

E.g.                                                                               . 

Generally, 
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Universality from multi-qubit pure states 
Theorem: [R‘05] Stabilizer ops + prepare      any pure state not a stabilizer 

state gives quantum universality. 

9 sequence of Clifford unitaries and postselected Pauli 
measurements which reduces       down to a single-qubit pure 
state which is not a Pauli eigenstate. 

Proof: 

By induction, true for n=1.   

with α, β ≠ 0,        and         stabilizer states (else apply induction). 

… … …  

But                                 , 
can’t both be stabilizer states! 

By applying Clifford unitaries, w.l.o.g.                          .  



Theorem: [R, ‘04] Stabilizer operations  
                           + Prepare        w/ <14.6% error 

Universality. 

Appl. 1: Stabilizer operations 
           + Prepare any pure state not a stabilizer state 

Universality. 

Appl. 2: Stabilizer op. fault-tolerance 
               Universal fault-tolerance. 

Any other single-qubit unitary 
Fact: 

Corollary: Stabilizer operations + (ability to prepare repeatedly 
any pure state which is not a stabilizer state) gives universality. 

Universality via Magic states distillation 



Application to fault-tolerant computing 
[Knill, quant-ph/0404104] 

Given scheme for fault-tolerantly applying stabilizer circuits, extend it to 
a universal fault-tolerant scheme. 

Universal fault-
tolerance 

Stabilizer op. 
fault-tolerance 

E.g., Knill’s scheme has threshold of 5-10% for fault-tolerant stabilizer 
operations, and the same threshold for fault-tolerant universal 
operations. 
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Open: Is stabilizer operations + (ability to prepare repeatedly single-
qubit mixed state   ) universal for all    outside the octahedron? 

Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically 
simulable. Universality from         w/ <             error is tight.  

Open questions 



Open questions 

Open: Is stabilizer operations + (ability to prepare repeatedly single-
qubit mixed state ρ) universal for all ρ outside the octahedron? 

Open: What about perturbations to the states ρ?  What about 
asymmetries?  What if we only have fidelity lower bound?  Can we 
characterize stable fixed points for stabilizer codes? 

Open: Can we give a provable reduction of fault-tolerance to problem of 
preparing stabilizer states with independent errors? 
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i.e., 

Def: Pauli group 

Def: Clifford group 

Definitions 

generated by Conjugation action Gates 



Fact: Circuit consisting only of stabilizer operations can be 
efficiently classically simulated. 

Clifford group 

Stabilizer operations 

+ prepare / measure Pauli operator eigenstates 

Operation State 
Stabilizer 

                                                . 

1. prepare 

2. prepare 

3. CNOT1,2 



Knill’s method for H-distillation: c-HL 

Encode ρ in Steane/Hamming [[7,1,3]] code. 

Measure logical/transverse Hadamard (                ) 
eigenvalue using 14 additional copies of ρ.   

HL 

X+ 

(Success probability of c-HL is 2-14.) 
Then decode, rejecting if any errors are detected. 

With equal probabilities ½, apply H to ρ; ) assume ρ lies 
along H axis:                                                           

                                                                               ,                . 

X+ 

H 



Using two copies of      , get 
controlled-Hadamard with 
probability ¼.  

Knill’s method for H distillation: c-H 
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T-distillation: Symmetrize ρ in the T direction, by applying with equal prob.’s 
1/3 either I, T (X!Y!Z!X) or T2.  Use the [[5,1,3]] code.  (Note that TL=T-5 for 
this code, from GF(4) symmetry.)  

Bravyi & Kitaev’s equivalent distillation 
procedure & T-distillation procedure 

H-distillation: Use a particular 15-qubit code, based on a generalization of 
the Hamming code.  (Procedure is exactly equivalent to Knill’s procedure, 
except 214 times more likely to succeed.) 

Idea: Choose n-qubit code C.  Take n copies of ρ, and decode C, rejecting if 
any errors are detected (i.e., project onto logical subspace) to leave ρ’.  
Recurse, using n copies of ρ’… 
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[Steane,…] Standard fault-tolerance scheme 
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Fact 1: Fact 2: 
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Physical gate error rate 
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of error 

1 

Physical bits  
per logical bit 

7 

72 
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O(log log N) concatenations 
O(log N) physical bits / logical 

•  N gate circuit 
Want error    1/N 

1/c 

1/c1/t 

•  [[7, 1, 3]] code only 
  corrects 1 error 



Teleportation: Knill’s erasure threshold of ½ 

Theorem [Knill ‘03]: Threshold 
for erasure error is ½ for Bell 
measurements. 
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Teleportation 
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Teleportation + Computation 

U 

Alice 

Bob 

Assume no errors! 



Teleportation: Knill’s erasure threshold of ½ 

Theorem [Knill ‘03]: Threshold 
for erasure error is ½ for Bell 
measurements. 

[Knill ‘04]: Estimated threshold of 5-10%. 
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Teleportation 



•  Errors inevitable in quantum computers 

•  Fault-tolerance schemes can tolerate physically plausible error rates 

Open questions 

Improved threshold result 
–  Modification of standard error 

[R ‘04] 

Efficient? Provable? 
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