Improved "magic states" distillation for quantum universality

Ben W. Reichardt

UC Berkeley

NSF, ARO

[quant-ph/0411036]

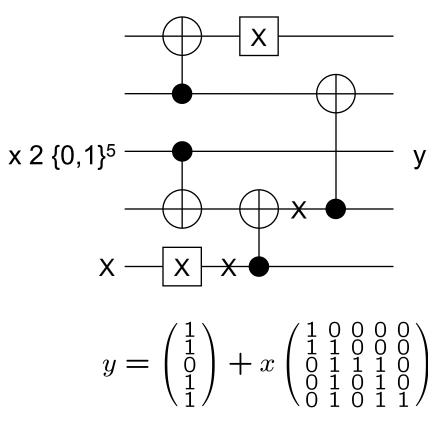
Stabilizer operations

Def: Stabilizer operations are

Clifford group unitaries

$$\left\langle H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, K = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \mathsf{CNOT} \right\rangle$$

- Preparation of $|0\rangle$
- Measurement in $|0\rangle$, $|1\rangle$



Gottesman-Knill Theorem: Stabilizer operations are efficiently classically simulable.

Main theorem

Def: Stabilizer operations are

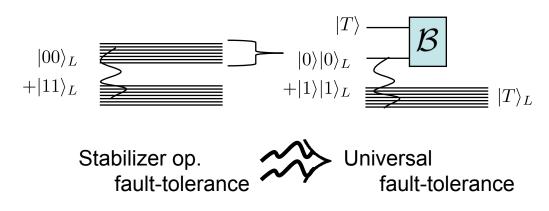
Clifford group unitaries

$$\left\langle H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, K = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \mathsf{CNOT} \right\rangle$$

- Preparation of $|0\rangle$
- Measurement in $|0\rangle$, $|1\rangle$

Theorem: [R'05] Stabilizer ops + prepare $|\psi\rangle$ any pure state not a stabilizer state gives quantum universality.

Application: [Knill'04] Estimated threshold of 5-10%.



Proof of theorem

Def: Stabilizer operations are

Clifford group unitaries

$$\left\langle H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, K = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \mathsf{CNOT} \right\rangle$$

- Preparation of $|0\rangle$
- Measurement in $|0\rangle$, $|1\rangle$

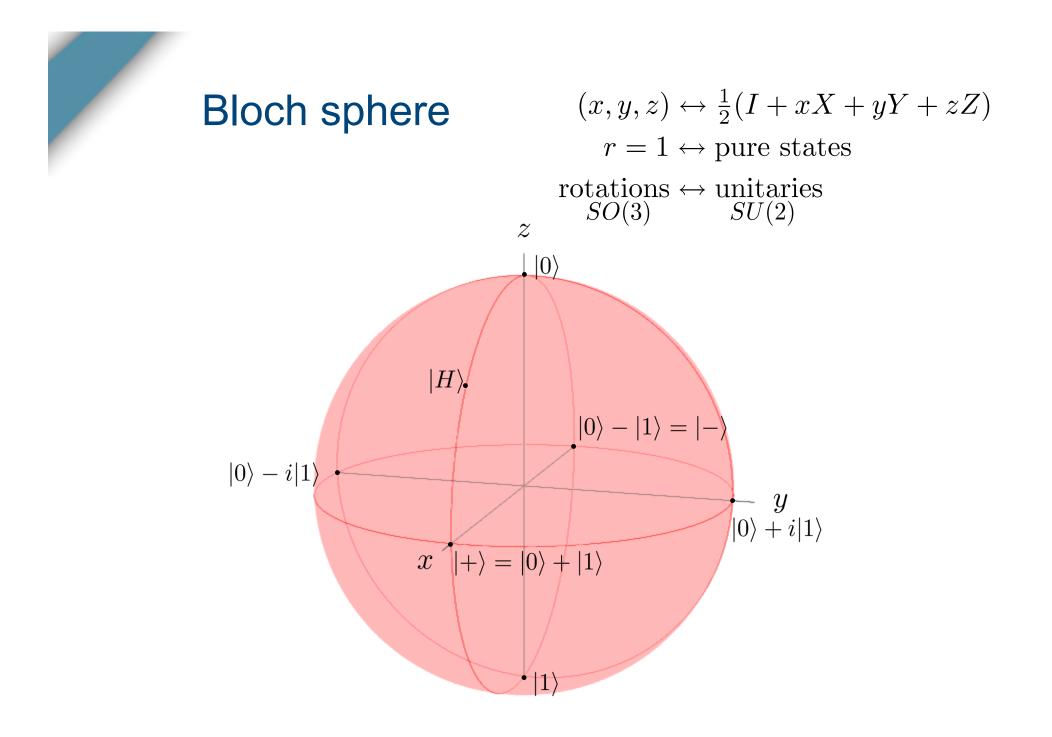
Theorem: [R'05] Stabilizer ops + prepare $|\psi\rangle$ any pure state not a stabilizer state gives quantum universality.

Lemma: [R'05] Stabilizer ops + prepare $|\psi\rangle$ any single-qubit pure state not a Pauli eigenstate gives quantum universality.

Fact: Stab ops + prepare $|H\rangle \propto \frac{(1+\sqrt{2})|0\rangle}{+|1\rangle}$! universality.

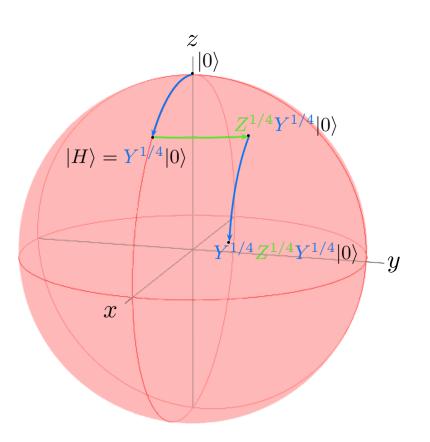
Fact: Stab ops + $Z^{1/4} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$! universality.

Open question: For which (single qubit) mixed states ρ does stab ops + prepare ρ ! universality ?



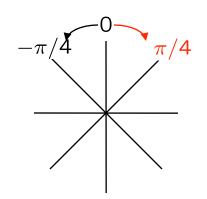
"Proof of Fact 2"

- **Theorem:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any pure state not a stabilizer state gives quantum universality.
- **Lemma:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any single-qubit pure state not a Pauli eigenstate gives quantum universality.
- Fact 1: Stab ops + prepare $|H\rangle \propto \frac{(1+\sqrt{2})|0\rangle}{+|1\rangle}$! universality.
- **Fact 2:** Stab ops + $Z^{1/4} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$! universality.
- **Open question:** For which (single qubit) mixed states ρ does stab ops + prepare ρ ! universality ?



- **Theorem:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any pure state not a stabilizer state gives quantum universality.
- **Lemma:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any single-qubit pure state not a Pauli eigenstate gives quantum universality.
- **Fact 1:** Stab ops + prepare $|H\rangle \propto \frac{(1+\sqrt{2})|0\rangle}{+|1\rangle}$! universality.
- **Fact 2:** Stab ops + $Z^{1/4} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$! universality.
- **Open question:** For which (single qubit) mixed states ρ does stab ops + prepare ρ ! universality ?

 $(\alpha|0\rangle + \beta|1\rangle) (|0\rangle + e^{i\pi/4}|1\rangle)$ $= \alpha|00\rangle + \beta e^{i\pi/4}|11\rangle$ $+ \alpha e^{i\pi/4}|01\rangle + \beta|10\rangle$

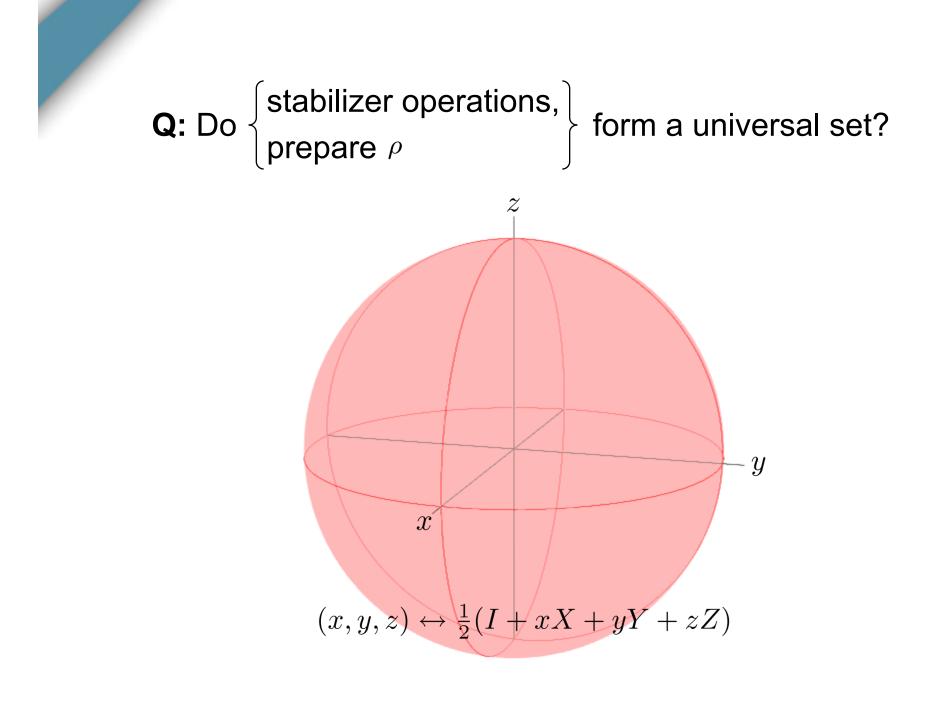


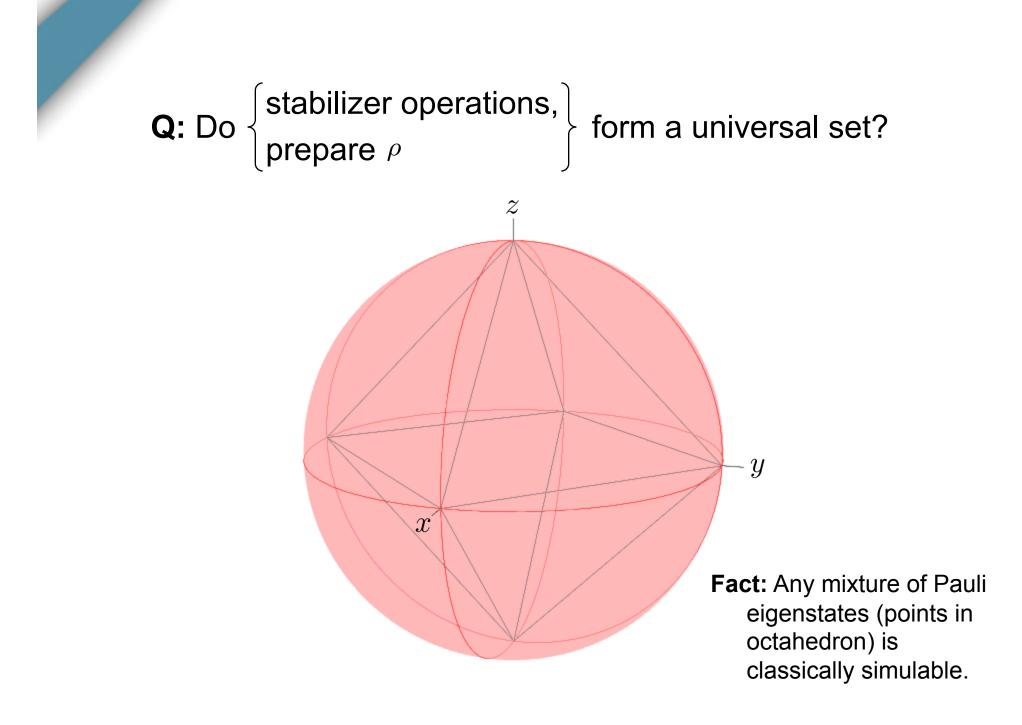
- **Theorem:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any pure state not a stabilizer state gives quantum universality.
- **Lemma:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any single-qubit pure state not a Pauli eigenstate gives quantum universality.
- **Fact 1:** Stab ops + prepare $|H\rangle \propto \frac{(1+\sqrt{2})|0\rangle}{+|1\rangle}$! universality.

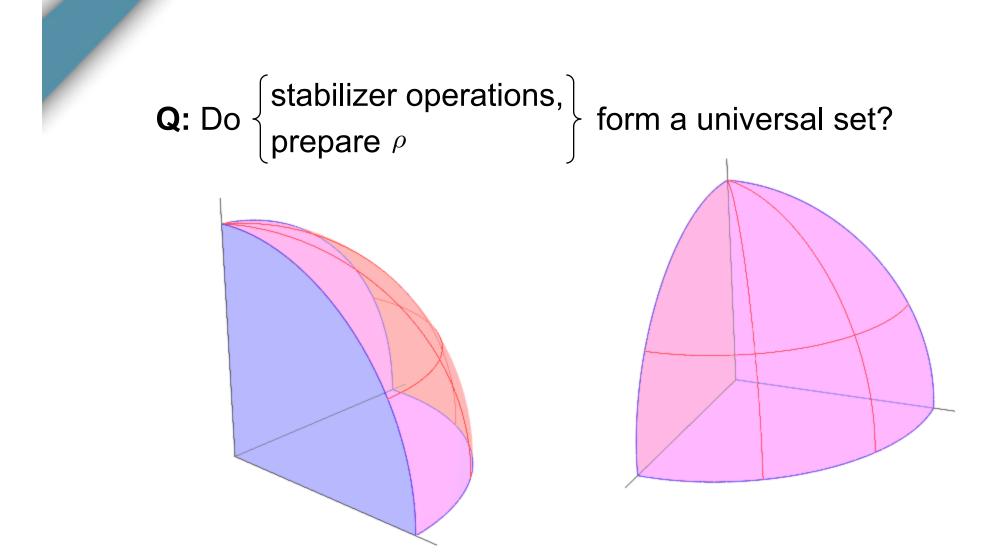
Fact 2: Stab ops +
$$Z^{1/4} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

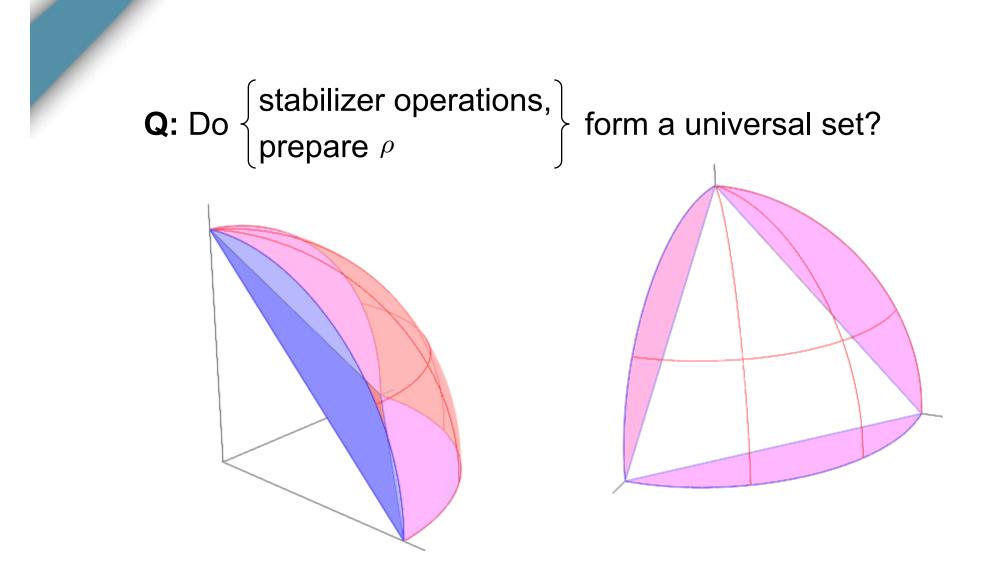
! universality.

Open question: For which (single qubit) mixed states ρ does stab ops + prepare ρ ! universality ?

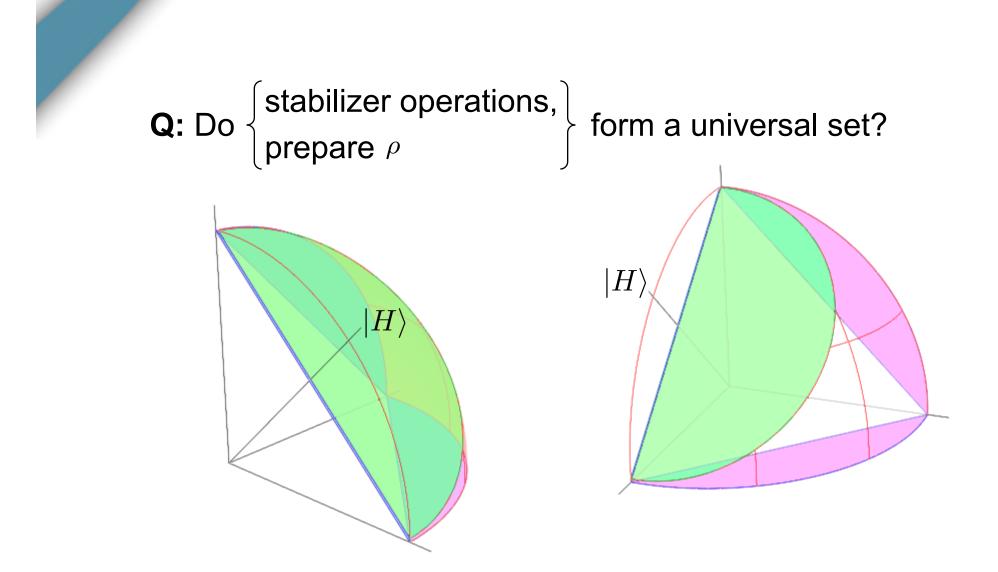




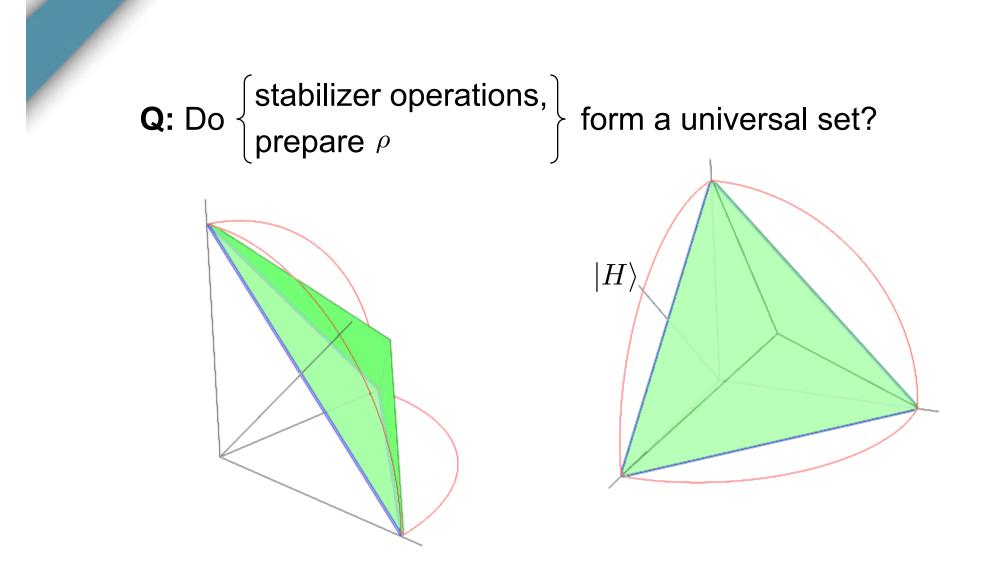




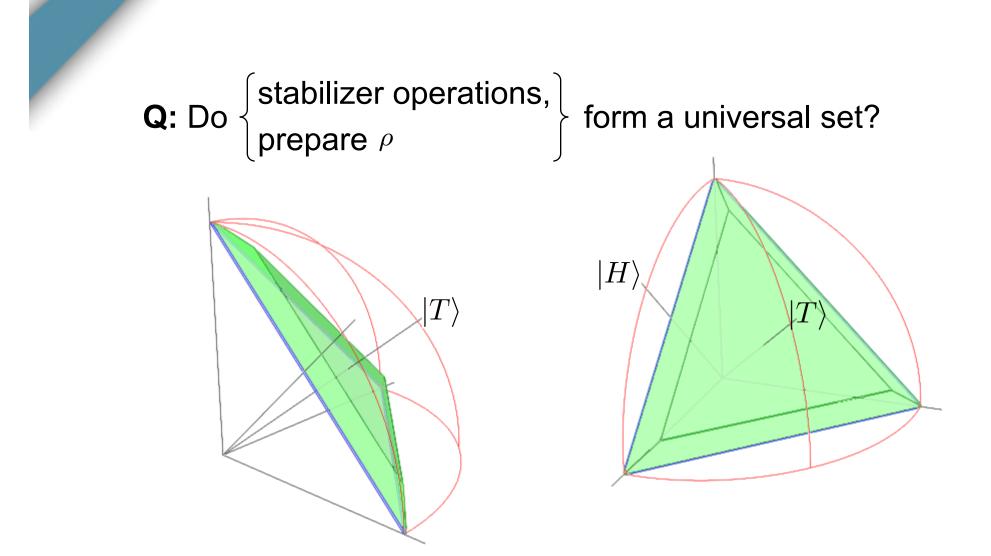
Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically simulable.



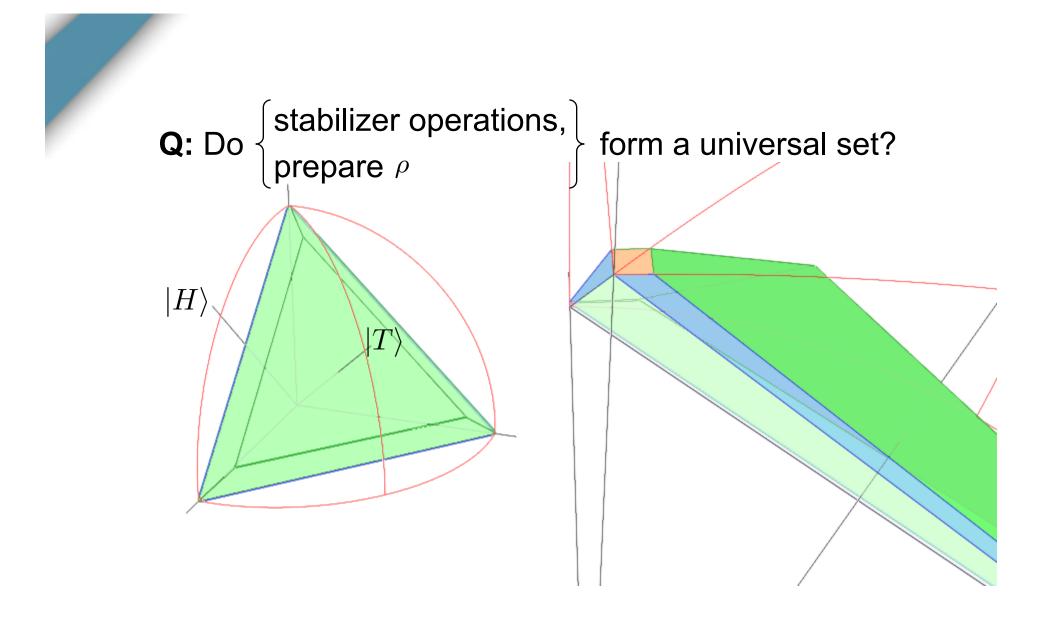
[Bravyi-Kitaev '04, Knill '04] Yes for $|H\rangle$ w/ <14.2% error



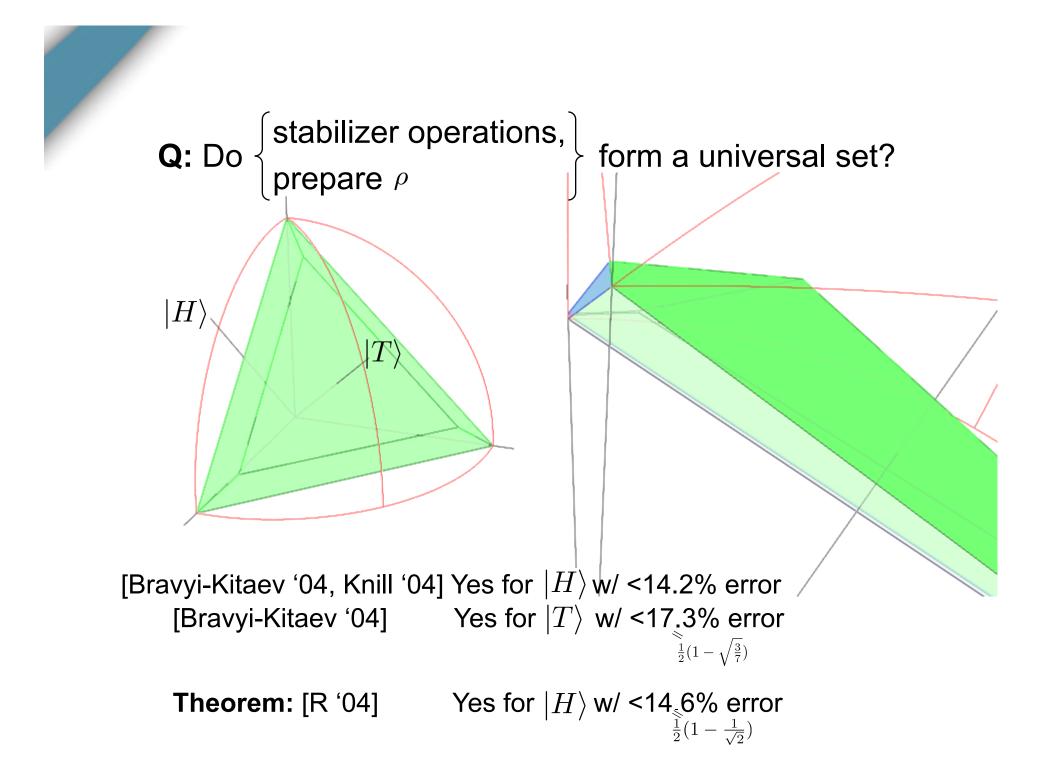
[Bravyi-Kitaev '04, Knill '04] Yes for $|H\rangle$ w/ <14.2% error

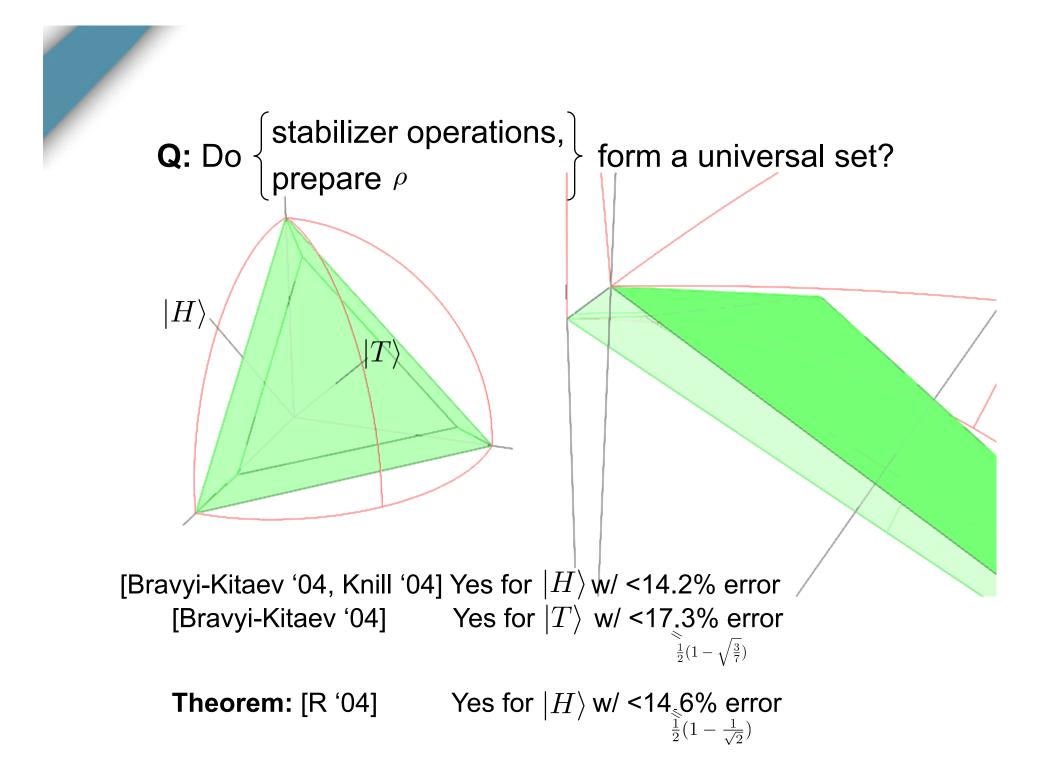


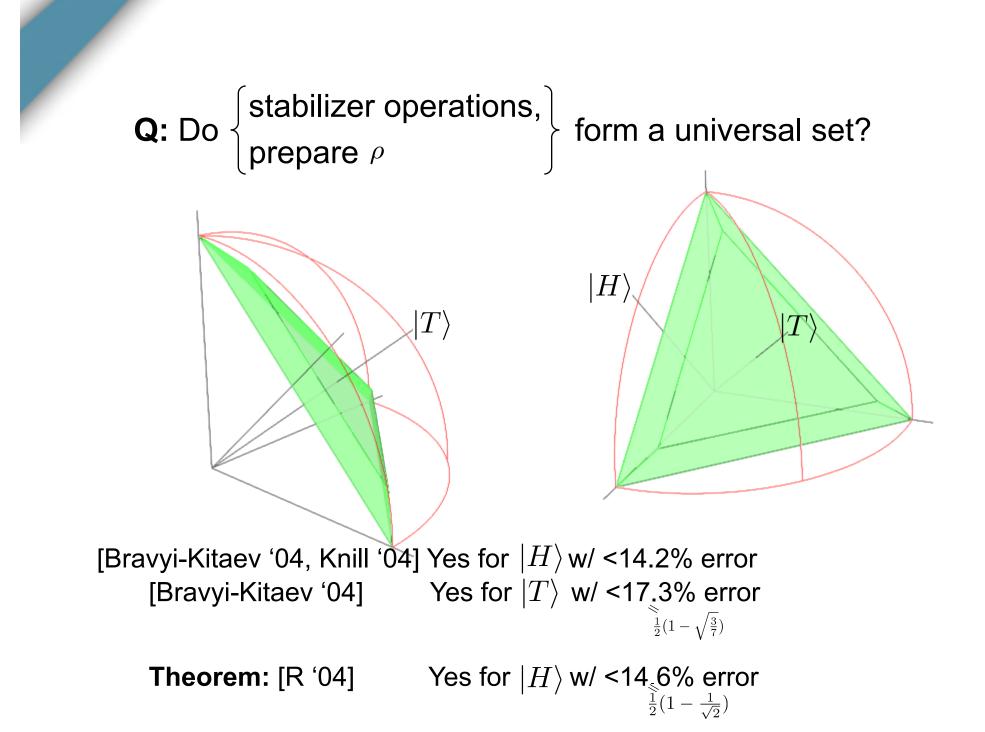
[Bravyi-Kitaev '04, Knill '04] Yes for $|H\rangle$ w/ <14.2% error [Bravyi-Kitaev '04] Yes for $|T\rangle$ w/ <17.3% error $\frac{1}{2}(1-\sqrt{\frac{3}{7}})$



[Bravyi-Kitaev '04, Knill '04] Yes for $|H\rangle$ w/ <14.2% error [Bravyi-Kitaev '04] Yes for $|T\rangle$ w/ <17.3% error $\sum_{\frac{1}{2}(1-\sqrt{\frac{3}{7}})}^{\infty}$

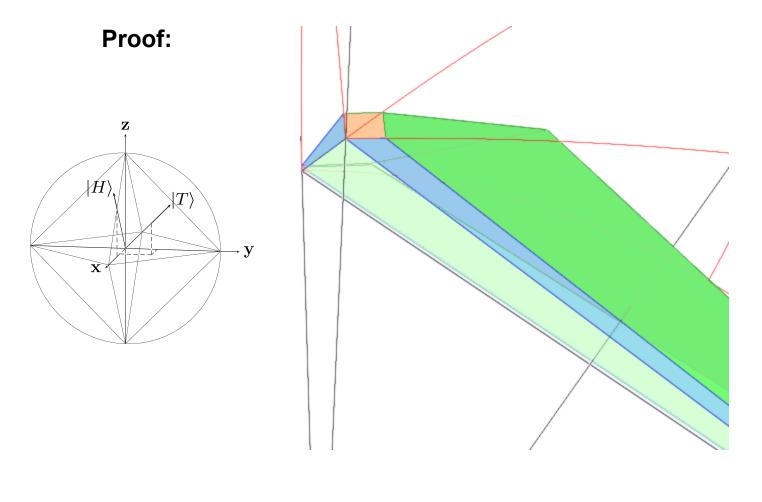






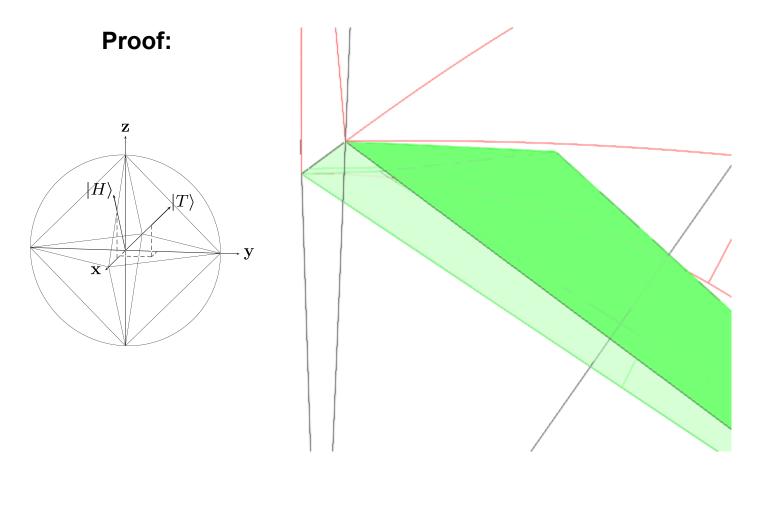
Universality from single-qubit pure states

Lemma: [R'05] Stabilizer ops + prepare $|\psi\rangle$ any single-qubit pure state not a Pauli eigenstate gives quantum universality.



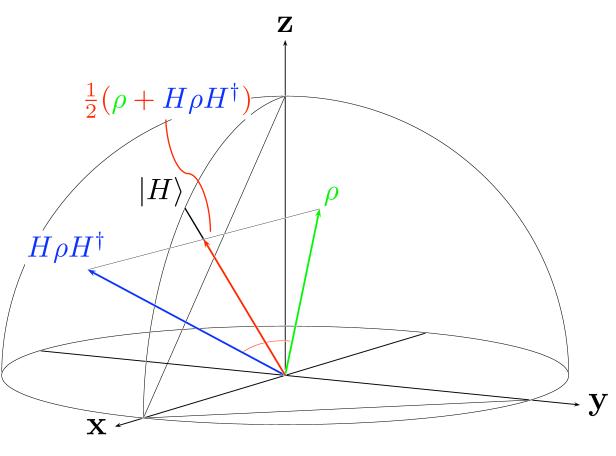
Universality from single-qubit pure states

Lemma: [R'05] Stabilizer ops + prepare $|\psi\rangle$ any single-qubit pure state not a Pauli eigenstate gives quantum universality.



Improved distillation procedure

1. With equal probabilities ½, apply H to ρ .) Assume $\dot{\rho}$ ies along H axis: $\rho = \frac{1}{2}(I + x(X + Z))$ $= \frac{1}{2}(\frac{1+x}{1+x}\frac{1+x}{1-x})$



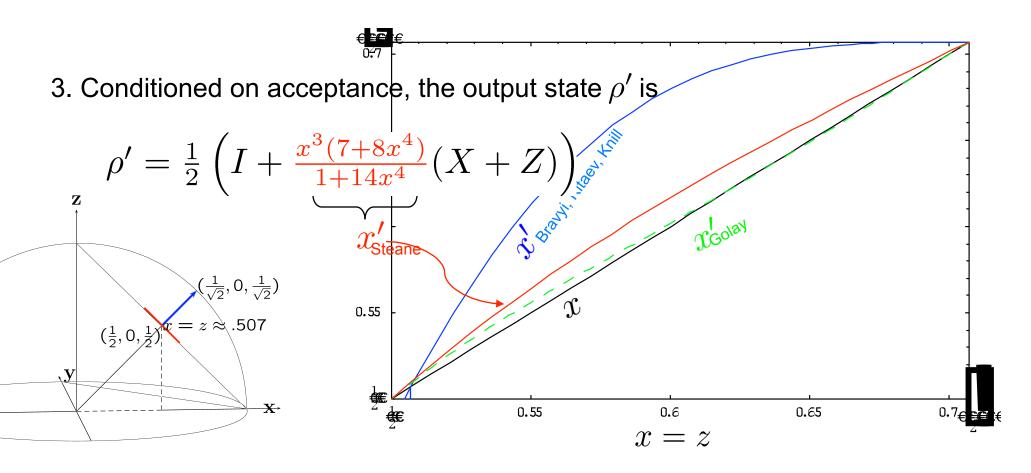
 $\rho = \frac{1}{2}(I + x(X + Z)) = \frac{1}{2}\begin{pmatrix} 1+x & 1+x \\ 1+x & 1-x \end{pmatrix}$

x =

Improved distillation procedure

1. Symmetrize ρ into $\rho = \frac{1}{2}(I + x(X + Z)) = \frac{1}{2} \begin{pmatrix} 1+x & 1+x \\ 1+x & 1-x \end{pmatrix}$.

2. Take 7 copies of ρ . Decode according to the [[7,1,3]] Steane/Hamming quantum code, rejecting if errors detected.



$\begin{array}{ll} \rho &= \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 1+x & 1+x \\ 1+x & 1-x \end{pmatrix} \\ \end{array} \rho' = \begin{pmatrix} \langle 0_L | \rho^{\otimes n} | 0_L \rangle & \langle 0_L | \rho^{\otimes n} | 1_L \rangle \\ \langle 1_L | \rho^{\otimes n} | 0_L \rangle & \langle 1_L | \rho^{\otimes n} | 1_L \rangle \end{pmatrix} / \mathrm{tr} \end{array}$

For a CSS code in which $X_{L} = X^{-n}$, $Z_{L} = Z^{-n}$, $|0_{L}\rangle = \frac{1}{\sqrt{|C|}} \sum_{\alpha} |a\rangle \qquad |1_{L}\rangle = X_{L}|0_{L}\rangle$

where C is the set of codewords for a classical code.

Thus
$$\langle 0_L |
ho^{\otimes n} | 0_L
angle \propto \sum_{a,b \in C} \langle a |
ho^{\otimes n} | b
angle$$
 .

E.g. $\langle 0001111 | \rho^{\otimes 7} | 0110011 \rangle = (\rho_{00})^1 (\rho_{01})^2 (\rho_{10})^2 (\rho_{11})^2$.

$$\begin{array}{l} \text{Generally,} \quad \langle a | \rho^{\otimes n} | b \rangle = & \begin{array}{c} \rho_{00}^{n - \frac{1}{2}(|a| + |b| + |a \oplus b|)} \rho_{01}^{\frac{1}{2}(-|a| + |b| + |a \oplus b|)} \\ & \\ \rho_{10}^{\frac{1}{2}(|a| - |b| + |a \oplus b|)} \rho_{11}^{\frac{1}{2}(|a| + |b| - |a \oplus b|)} \\ & \\ \end{array} \\ = & \begin{pmatrix} \rho_{00} & \rho_{01} \\ & \\ \end{array} \end{pmatrix}$$

- **Theorem:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any pure state not a stabilizer state gives quantum universality.
- **Lemma:** [R'05] Stabilizer ops + prepare $|\psi\rangle$ any single-qubit pure state not a Pauli eigenstate gives quantum universality.
- **Fact 1:** Stab ops + prepare $|H\rangle \propto \frac{(1+\sqrt{2})|0\rangle}{+|1\rangle}$! universality.

Fact 2: Stab ops +
$$Z^{1/4} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

! universality.

Open question: For which (single qubit) mixed states ρ does stab ops + prepare ρ ! universality ?

Universality from multi-qubit pure states

Theorem: [R'05] Stabilizer ops + prepare $|\psi\rangle$ any pure state not a stabilizer state gives quantum universality.

By induction, true for n=1.

 $|\psi\rangle = \alpha |0\rangle |\psi_0\rangle + \beta |1\rangle |\psi_1\rangle$

with α , $\beta \neq 0$, $|\psi_0\rangle$ and $|\psi_1\rangle$ stabilizer states (else apply induction).

By applying Clifford unitaries, w.l.o.g. $|\psi_0\rangle = |0^{n-1}\rangle$.

$$\cdots \cdots |\psi\rangle = \alpha |0\rangle |0^{n-1}\rangle + \beta |1\rangle |+^{n-1}\rangle$$

But
$$\alpha |0\rangle + \frac{\beta}{2^{(n-1)/2}} |1\rangle$$
, $\frac{\alpha}{2^{(n-1)/2}} |0\rangle + \beta |1\rangle$
can't both be stabilizer states!

Universality via Magic states distillation

Theorem: [R, '04] Stabilizer operations + Prepare $|H\rangle$ w/ < $\frac{1}{2}(1-\frac{1}{\sqrt{2}})$ error

 \Rightarrow Universality.

Fact: Stabilizer operations

+ Any other single-qubit unitary

 \Rightarrow Universality.

Appl. 2: Stabilizer op. fault-tolerance☆> Universal fault-tolerance.

Corollary: Stabilizer operations + (ability to prepare repeatedly

Application to fault-tolerant computing

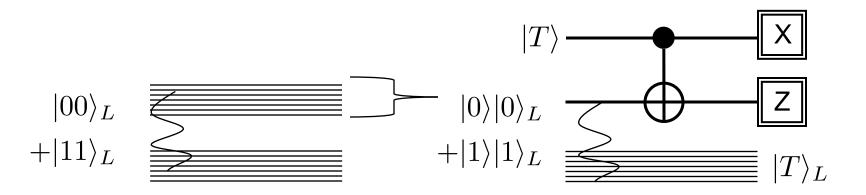
[Knill, quant-ph/0404104]

Given scheme for fault-tolerantly applying stabilizer circuits, extend it to a universal fault-tolerant scheme.

Universal faulttolerance

Stabilizer op. fault-tolerance

E.g., Knill's scheme has threshold of 5-10% for fault-tolerant stabilizer operations, and the same threshold for fault-tolerant universal operations.



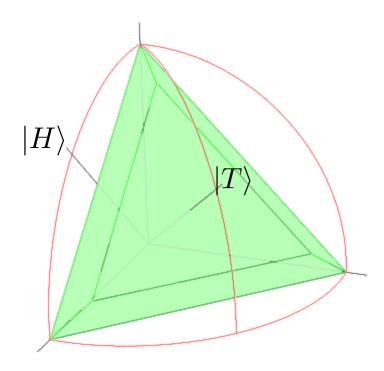
Open questions

ρ

ρ

У

- **Fact:** Any mixture of Pauli eigenstates (points in octahedron) is classically simulable. \Rightarrow Universality from $|H\rangle$ w/ < $\frac{1}{2}(1-\frac{1}{\sqrt{2}})$ error is tight.
- **Open:** Is stabilizer operations + (ability to prepare repeatedly singlequbit mixed state ρ) universal for all ρ outside the octahedron?



ρ

- **Open:** Is stabilizer operations + (ability to prepare repeatedly singlequbit mixed state ρ) universal for all ρ outside the octahedron?
- **Open:** What about perturbations to the states ρ ? What about asymmetries? What if we only have fidelity lower bound? Can we characterize stable fixed points for stabilizer codes?
- **Open:** Can we give a provable reduction of fault-tolerance to problem of preparing stabilizer states with independent errors?

Definitions <u>Def</u>: Pauli group $\mathcal{P} = \left\{ s \mu_1 \otimes \cdots \otimes \mu_n : \frac{s \in \{\pm 1, \pm i\}}{\mu_i \in \{I, X, Y, Z\}} \right\}$ <u>**Def</u>: Clifford group** $\mathcal{C} = \text{Normalizer}(\mathcal{P}) \subset U_{2^n}$ </u> i.e., $cpc^{\dagger} \in \mathcal{P} \quad \forall c \in \mathcal{C}, p \in \mathcal{P}$ generated by Gates Conjugation action $\begin{array}{ccccc} X \otimes I &\to X \otimes X \\ Z \otimes I &\to Z \otimes I \\ I \otimes X &\to I \otimes X \\ I \otimes Z &\to Z \otimes Z \end{array}$ CNOT $H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$ $X \leftrightarrow Z$ $P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad \qquad X \to Y \to -X$

Stabilizer operationsClifford group $\mathcal{C} = \langle CNOT, H, P \rangle$

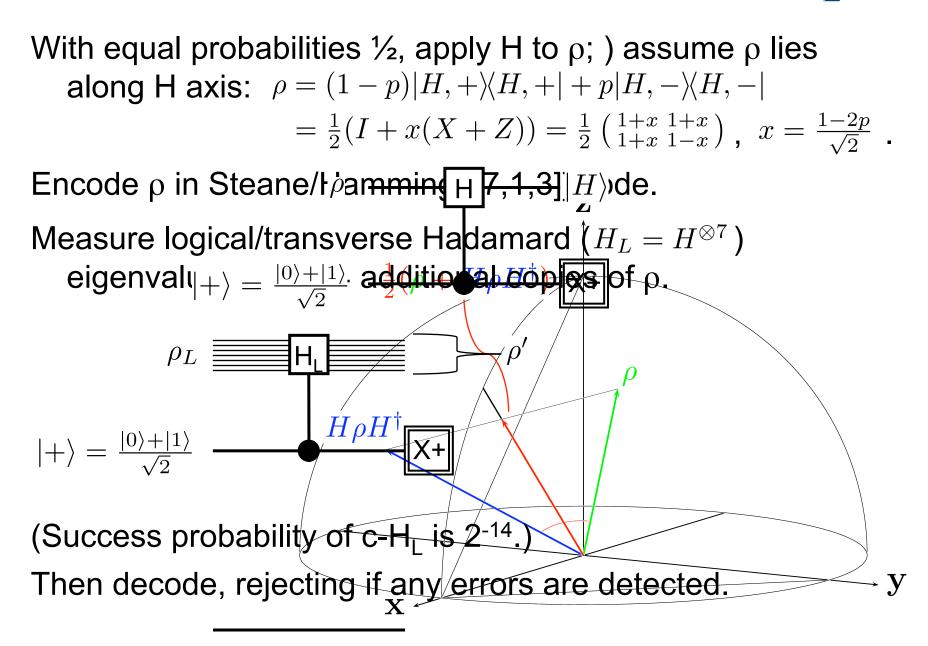
+ prepare / measure Pauli operator eigenstates

Fact: Circuit consisting only of stabilizer operations can be efficiently classically simulated.

<u>Operation</u>	<u>State</u>	Stabilizer $S = \{ M \in \mathcal{P} : M \psi \rangle = \psi \rangle \}$
1. prepare $\frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$	$rac{1}{\sqrt{2}}(\ket{0}+\ket{1})$	$\langle X \rangle$
2. prepare $ 1 angle$	$rac{1}{\sqrt{2}}(\ket{01}+\ket{11})$	$\langle X\otimes I, I\otimes -Z\rangle$
$\begin{array}{ccc} \mathbf{3.CNOT}_{1,2} \\ X \otimes I \to X \otimes X \\ Z \otimes I \to Z \otimes I \\ I \otimes X \to I \otimes X \\ I \otimes Z \to Z \otimes Z \end{array}$	$rac{1}{\sqrt{2}}(01 angle+ 10 angle)$	$\langle XX, -ZZ \rangle$

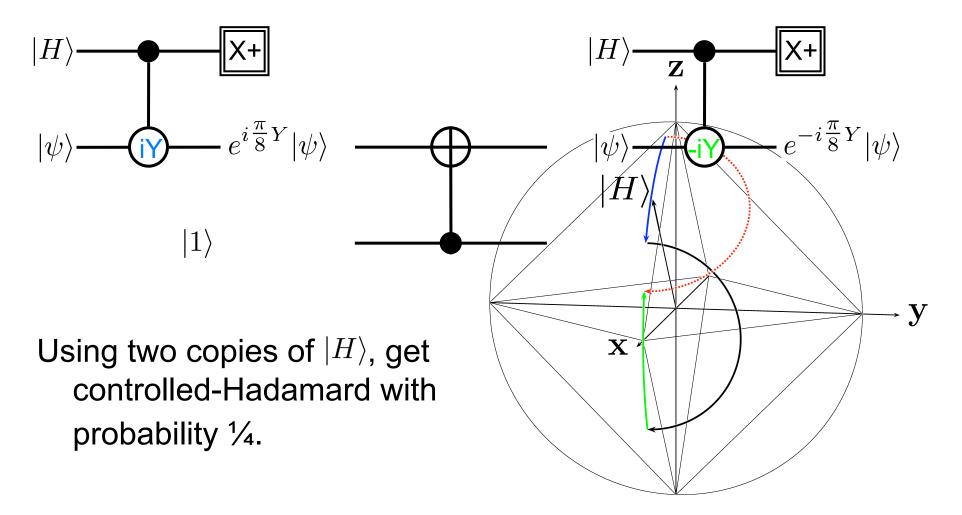
Ctabilina.

Knill's method for H-distillation: c-H_L



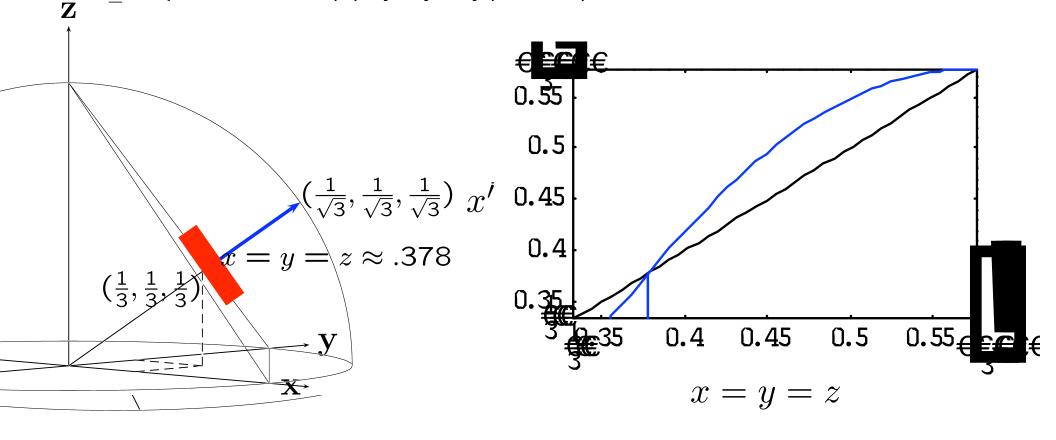
Knill's method for H distillation: c-H

$|H\rangle \propto (1+\sqrt{2})|0\rangle + |1\rangle$

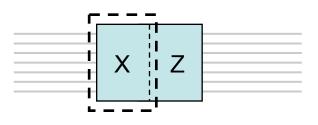


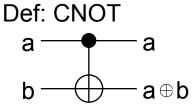
Bravyi & Kitaev's equivalent distillation procedure & T-distillation procedure Idea: Choose n-qubit code C. Take n copies of ρ, and decode C, rejecting if any errors are detected (i.e., project onto logical subspace) to leave ρ'. Recurse, using n copies of ρ'...

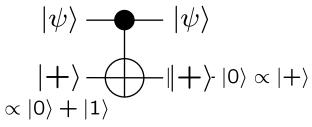
 Image: Strate of the sector of the sector

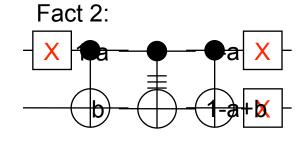


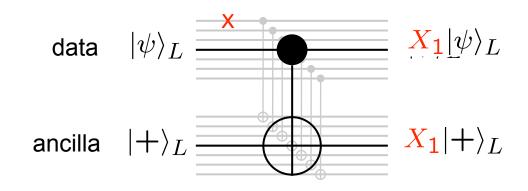
Standard fault-tolerance scheme





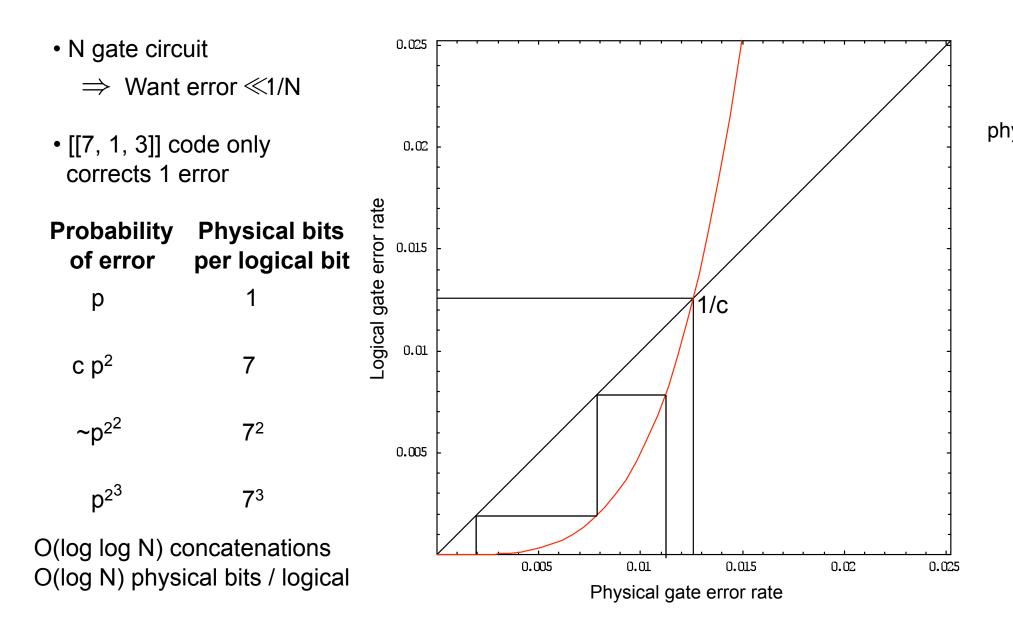






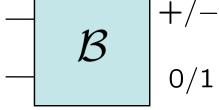
[Steane,...]

Threshold from concatenation

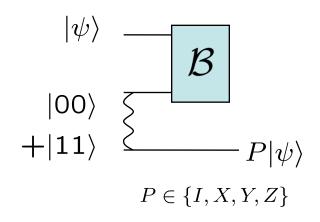


Teleportation: Knill's erasure threshold of $\frac{1}{2}$

Theorem [Knill '03]: Threshold for erasure error is ½ for Bell measurements.



Teleportation

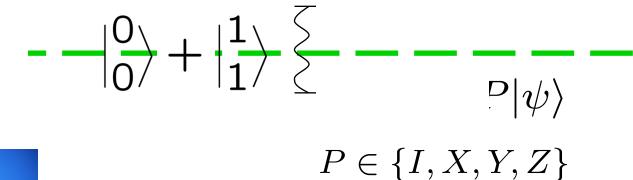


Teleportation

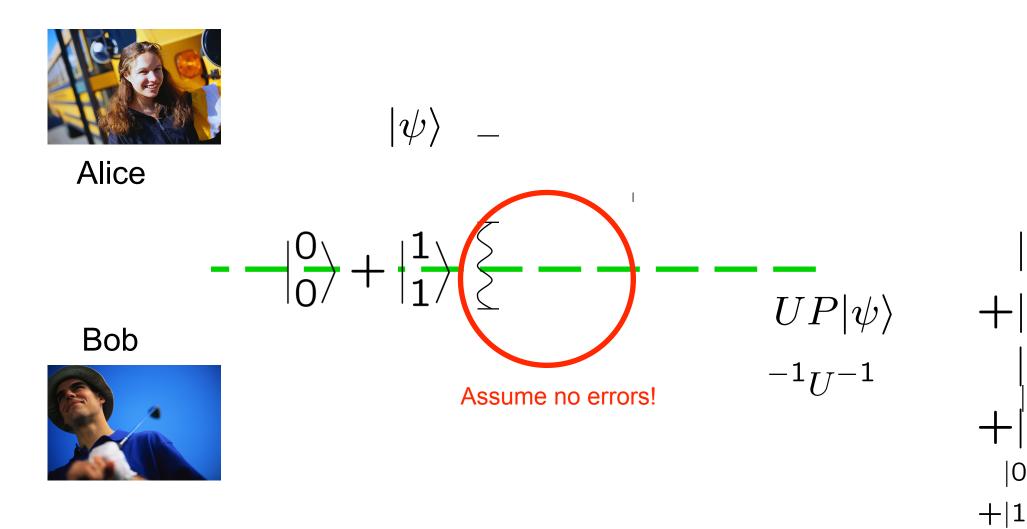
 $|\psi
angle$ _

Alice

Bob

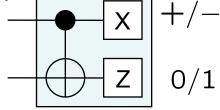


Teleportation + Computation

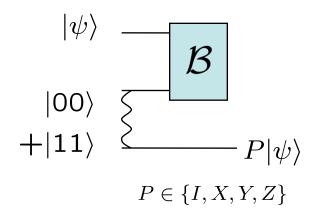


Teleportation: Knill's erasure threshold of $\frac{1}{2}$

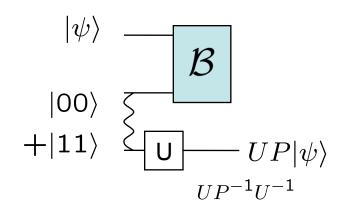
Theorem [Knill '03]: Threshold for erasure error is $\frac{1}{2}$ for Bell measurements.



Teleportation

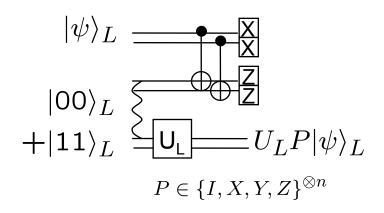


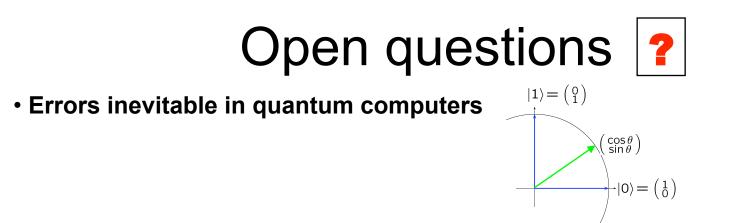
+ Computation



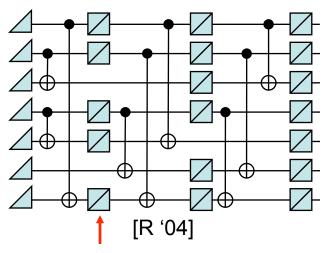
[Knill '04]: Estimated threshold of 5-10%.

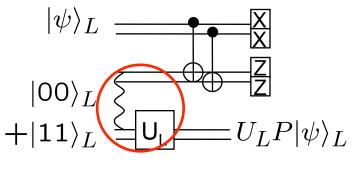
+ Fault-tolerance





• Fault-tolerance schemes can tolerate physically plausible error rates





[Knill '04]

Efficient?

Provable?

Improved threshold result [R '04]