Making quantum computers

%
) 0,9
& % %
LS ‘&/90096
& L e, % %
& AN
&L Q.ug}o
P & e &

Encoded noisy

Ben Reichardt
Caltech

- 37
Ancilla factories Universal

distillery




Motivations for quantum information processing

® Quantum computing (QC) ® Simulation & modeling

® Extended Church-Turing Thesis: ® for quantum devices,

Anything physically efficiently ® chemistry,
computable can be computed
efficiently on my laptop

® QC:Extended Church-Turing Thesis

® materials (high-T superconductors,
new states of matter?)

is false; there are exponentially-faster ® Quantum sensing
algorithms (for interesting problems) ® Precise measurement and
by using quantum mechanics lithography

® Atomic clocks

® Cryptography ® Basic science
® Breaks RSA public-key cryptosystem ® Investigate measurement/
® Gives unconditionally secure key decoherence, quantum/classical
distribution boundary

® Test qu. mechanics on new scales

(but no free lunch...)




Quantum information
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® State of n qubits = unit vector in C2"
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Quantum information

( o ) = ap|0) + aq|1)
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“Qubit”: (&x)xE{O,l}T

lao|? + Jaz]? =1

State of n qubits = unit vector in C2"
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Computation by local gates, rotate the state vector

Observing/measuring system collapses it to a single classical bitstring x
® No exponential parallelism

® Have to “finesse” the quantum system to output the classical
information you want




Classical information processing

Classical state is a vector of probabilities:
{Patoefoay pe>0 D po=1
T

Valid operations are stochastic maps

Quantum information processing

Quantum state is also a vector

{asteefo,yn Z|O‘az|2 =1

Valid operations are rotations (unitaries)

The universe is quantum mechanical but it
looks classical because of noise...




Quantum algorithms

Today:
New algorithmic
approach based

on span programs
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Quantum computing in 2008

e lon traps e Superconducting qubits

® can trap and cool 16-18 qubits ® 2 qubit local interactions

® can entangle 6-8 qubits in a trap becoming routine

nonlocal movement

® microfabrication of trap arrays on chips, dealing 8 intaracti ol
interactions now possible

with increased noise

[SHOMSM'05]

. . o , .
® in next 2-3 years may be able to compute with noise levels seem promising. ..

40-60 qubits

® challenges: controlling thousands of traps with
dozens of detection channels and lasers along ~® Other technologies:

the surface of the chip... ® Photonic qubits, quantum dots...




® Scaling these systems is a major engineering challenge

.
-
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® But the basic technologies have been proven,
there are intermediate rewards

® And there are no known fundamental difficulties, except...

Common obstacle is noise!

® Physically reasonable noise rates are ~1% error per gate, or maybe 0.1%

Only 100 operations before an error can occur and propagate through the
system

® Factoring a 2048-bit number uses .
K-bit number:

e 6x 10! gates on 72 K3 gates  versus e“classically
e 10,000 qubits 5 K qubits

e Need error <1/10'? per gate




Noise is fundamental problem for quantum
computers: entangled systems are fragile

dead cat
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® Schrodinger’s cat: _--F--
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® “Both dead and alive,” in superposition; but collapses to one or the other
when observed @

® A single stray photon can collapse it — and also analogous states in a
quantum computer

® Physically reasonable noise rates are ~1% error per gate, or perhaps 0.1%




How to deal with noise?

Engineering

® Not enough— noise is
fundamental in quantum
systems

2. Fault tolerance

[Von Neumann ’56]

® Enough to engineer the noise
rate beneath a constant
threshold,

® Then effective noise rate can
be decreased arbitrarily (and
efficiently) using error-
correcting codes
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Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.




Classical fault tolerance

[Von Neumann ‘56]

Make fault-tolerant a circuit consisting of a universal

——20
Perfect op’s: | ’ \<
set of operations, some faulty: =1,

Faulty op’s: {AND, NOT }
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What’s different quantumly?

e Quantum problems:

e Quantum states are continuous, not discrete—need to protect against
continuous errors

® No-cloning theorem: Can’t copy a quantum state |¢) — |¢)|¢),so no
immediate analog of the repetition code 0 — 0,1 +— 1"

® But quantum ECCs do exist! [Shor '95]




Operational def. of QECC

e Quantum problems:

e Quantum states are continuous, not discrete—need to protect against
continuous errors

® No-cloning theorem: Can’t copy a quantum state |¢) — |¢)|¢),so no
immediate analog of the repetition code 0 — 0,1 +— 1"

® But quantum ECCs do exist! [Shor '95] Operationally,
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Quantum error-correcting codes exist

e Although quantum states are continuous, correcting a discrete set of errors

(bit and phase flips) suffices

® Based on classical linear ECCs: QECC comes from two linear ECCs

bit flip error

phase flip error
(5)— (55)

(one for bit flips, one for phase flips)




Quantum error-correcting codes exist

e Although quantum states are continuous, correcting a discrete set of errors
(bit and phase flips) suffices

® Based on classical linear ECCs: QECC comes from two linear ECCs

one for bit flips, one for phase flips
® How can we use these codes? ( P P Ps)
® Need operations as well as memory

® Error recovery must be resilient to faults during recovery

® How to encode into them in the first place!? (qu problem)
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Fault-tolerance intuition

® Compile ideal circuit into "fault- .} 4iovam K

tolerant” (noise-resistant) version, fails to commute
starting with small QECC:

Threshold for

—1 Gate — improvement: 1/c

N

" | Encoded | | Error |
| gate | |correction _
] | | 4 levels ~
> (0,0) Physical error
rate p
perfect perfect e Concatenate (i.e., repeat) for arbitrarily
decoding decoding improved reliability (so arb" long calcs), if
starting below a constant noise threshold
 / perfect gate 4 ® Problem: Noise model at encoded level is
>

not the same as the physical noise model!




Abridged History of Quantum Fault Tolerance

® |996-97: First fault-tolerance results: QECCs, threshold proofs
Shor, Steane, Calderbank, Aharonoyv, Ben-Or, Kitaev, Knill,
Laflamme, Zurek, ...

® Proved existence of some positive tolerable noise rate using
concatenated qu. codes of distance 25

® No explicit lower bounds on tolerable noise rate, but
estimates were 10-6-10- noise per gate

® Moral: Fault tolerance makes quantum computers plausible
in the real world

-D. Gottesma




Abridged History of Quantum Fault Tolerance

Estimates &
simulations

Proofs

® |997: Aharonov/Ben-Or, Kitaev: Prove |® 2002: Steane: Correct bit flip errors all at

positive tolerable noise rate for codes once, and then phase flip errors all at once

i > . . .
of distance d=5 ® based on simulations, estimates 3x10-3

® 2005: R, Aliferis/Gottesman/Preskill: tolerable noise rate per gate
First explicit numerical threshold lower
bounds, threshold for distance-3 COdj

— Simulations using distance-3 codes

® Basic estimates: ® Optimized estimates: ® 2D locality constraint
® Aharonov & Ben-Or ‘97 ® Zalka‘97 ® Szkopek et al ‘04
® Gottesman ‘97 e R‘D4 ® Svore-Terhal-DiVincenzo ‘05
® Knill-Laflamme-Zurek ‘98 ® Svore-Cross-

e Preskill ‘98 Chuang-Aho ‘05




Abridged History of Quantum Fault Tolerance

Estimates &

Proofs . .
simulations

® |997: Aharonov/Ben-Or, Kitaev: Prove |® 2002: Steane: Correct bit flip errors all at
positive tolerable noise rate for codes once, and then phase flip errors all at once

i > . . .
of distance d=5 ® based on simulations, estimates 3x10-3

® 2005: R, Aliferis/Gottesman/Preskill: tolerable noise rate per gate
First explicit numerical threshold Ioﬁ

bounds, threshold for distance-3 codes

/

e Postselection Improved threshold result [R ‘04]

— Modification of standard error correction
scheme increases estimated threshold
3x, to almost 1%.
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Error-detection-based fault-tolerance

e Compile ideal circuit into “fault-

—1 Gate —

N

| Encoded Error |
| gate | detection
perfect perfect
decoding decoding

perfect gate

. . . . Prob. diagram
tolerant” (noise-resistant) version, fails to commute

starting with small QECC:

3 lev

4 levels

(0,0)

Thyeshold for
impybvement: 1/c

Physical error
rate p

In simulations, tolerates much higher noise
rates than error-correction-based FT schemes

® But (previously) no proven positive threshold!




Effect of
postselection in
ancilla preparation

[R ‘04]

Approximate Effect on Threshold

Logical ancilla error rate

Logical level 1 ancilla errors

A .
L

NS

xmmmX

.01 - PRt —e X

-~- Steane Z
- - Steane X
—+—Reject Z

.001 =+ 3

.0001 /// —— Reject X
.00001 y
-000001 T T T T T T T T T

Physical error rate

o .01 1
® -#&- Steane
E —— Reject
= —3/4
© oot
-0001 T T T T T T T T 1
g & &8 & & & & & =
Q Q Q < < Q Q Q Q S
Physical error rate
Time to prepare encoded ancilla
100 /
80 /
60
- - Steane avg
—— Reject avg
40
20
e
o

Physical error rate




Abridged History of Quantum Fault Tolerance

Proofs

® |997: Aharonov/Ben-Or, Kitaev: Prove
positive tolerable noise rate for codes
of distance d=25

® 2005: R, Aliferis/Gottesman/Preskill:

First explicit numerical threshold lower
bounds, threshold for distance-3 codes

e Postselection

e Postselection + Teleportation

Estimates &
simulations

® 2002: Steane: Correct bit flip errors all at
once, and then phase flip errors all at once

® based on simulations, estimates 3x10-3
tolerable noise rate per gate

Improved threshold result [R‘04]

— Modification of standard error correction
scheme increases estimated threshold
3x, to almost 1%.

Knill’s threshold result [Knill “04]

— Estimated 3-6% threshold for
independent depolarizing errors.




Alice’s lab

Bob’s lab

Quantum teleportation

measure

classical
measuremeht
outcome

|
|
prepare entangled state
|
|

|




Applying teleportation to fault tolerance

|.Encoding 2.Decoding 3.Error correction 4.Computation

V)

measure

|

prepare
entangled state

|

time »




Applying teleportation to fault tolerance
. Error correction 2. Computation

Elp) —=

encoder measure

(e
(B

[ entangled state ]

Elp)

* decoding measurements using classical computer




Applying teleportation to fault tolerance
|. Error correction 2. Computation
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Applying teleportation to fault tolerance
Error correction + Encoded Computation

Ely)
1=
ﬁUHg\\ EU|)

time »

® Teleportation allows for correcting bit flip errors, phase flip errors, and doing
one step of computation all at once.

® (Provided that we can prepare reliably the necessary resource states.)

[ entangled state ]




Teleported EC + encoded computation
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® Teleportation allows for correcting bit flip errors, phase flip errors, and doing

one step of computation all at once.
® (Provided that we can prepare reliably the necessary resource states.)
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[ entangled state ]
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® Note: We can prepare very good ancilla states, e.g., throwing away all ancillas
with any detected errors (“postselection”). We wouldn’t want to throw away

the data—but the data is isolated from the ancilla state.




Teleported EC + encoded computation
Elp) 3
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Teleportation allows for correcting bit flip errors, phase flip errors, and doing one step
of computation all at once.

(Provided that we can prepare reliably the necessary resource states.)

Note: We can prepare very good ancilla states, e.g., throwing away all ancillas with
any detected errors (“postselection”). We wouldn’t want to throw away the data—
but the data is isolated from the ancilla state.

Quantum Quantum
disadvantages advantage!
States are continuous (i.e., analog) ® Quantum teleportation allows

No-cloning theorem isolating the data from errors




® Problem: Although Knill estimated tolerable noise rate was
3-6%, proofs could not show that postselection-based schemes
tolerated any noise at all!

Renormalization frustrates previous proofs

Most of the time, errors are detected —

Controlled Unc@lled but (counterintuitively) survival probability for
(well-bounded) (wokst-case) uncontrolled portion could be much higher
1%
\ Coftrolled UncGnuplled
99% 1% 1%

Proofs based on controlling events most of the time,
with occasional failures

Uncontrolled fraction of probability ] \d
mass increases exponentially after

. . '
renormalizing! 50% 50%




Intuition for Aharonov/Ben-0r’s proof

Idea: Maintain inductive invariant of goodness. (A level-k block is good “if it
has at most one bad level-(k-1) subblock.”)

Y X
good EC good good X| EC good
X X X 32
X X X X
good EC good good X| EC E bad—uncontrolled!
X %
(assuming one level k-1 error, m>7) (two level k-1 errors, m=7)

Problems:

® |nefficient analysis: Logical error rate for a distance-d code drops as ¢ p(4!"2 instead
of ¢ p@+n

Can’t hope for very good rigorous lower bounds on the noise threshold

® No threshold at all for concatenated d=3 codes, or for postselection-based
schemes

\ X

good EC | X bad (one level k-1 error is already too many)




® Problem: Although Knill estimated tolerable noise rate was
3-6%, proofs could not show that postselection-based schemes
tolerated any noise at all!

® Renormalizing the error distribution leads to bad correlations.

Results [R06]

® F[Existence of tolerable noise rates for many

fault-tolerance schemes, including: 1. ED L
—— ® —

® Schemes based on error-detecting codes, & A
: & i
not just ECCs (Knill-type) S—— ED -
U |

® Distance-3 codes, and more efficient
“Fibonacci”-type schemes (d=2 codes)

® Tolerable threshold lower bounds*
® 0.1% simultaneous depolarization noiset

® |.1%,if error model known exactly

1 Versus .02% best lower bound for error-

* Subject to mi ical t
Hbject to minor humerical caveats correction-based FT scheme [Aliferis, Cross 2006]




Techniques

® Main new technique is to maintain close control over the
distribution of errors in the quantum computer
(Previous threshold proofs had used a “worst-case” criterion
for error behavior that blew up during renormalization.)

® Rewrite true error distribution as a mixture of nearby
distributions whose error distributions lack nasty correlations




Bitwise-independent noise is nice...

e Def: Noisy encoder = perfect encoder, followed by bitwise-indep. noise at rates <p.

—EE = ¢ B

®)

(tool for analysis—such encoders don’t actually exist)

(much stronger than
Aharonov/Ben-Or’s claim)

Encoded | | Error | 1 __| Perfect B
) gate | |detection| — gate B

bitwise-independent errors
bitwise-independent errors following perfect gate, plus

preceding encoded gate quadratically suppressed
independent logical errors

Induction claim?




Encoded
] gate | |

Error
detection

Perfect
gate

D
\V/

th On

on

O D9

tn
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encoded FT circuit

® Since the error model is preserved (level-one logical errors have the same form as

o,

physical errors), the analysis can be repeated to give a threshold




Bitwise-independent noise is nice...

e Def: Noisy encoder = perfect encoder, followed by bitwise-indep. noise at rates <p.

—EE = ¢ B

®)

(tool for analysis—such encoders don’t actually exist)

(much stronger than
Aharonov/Ben-Or’s claim)

Encoded | | Error | L __| Perfect B
) gate | |detection| — gate B

bitwise-independent errors
bitwise-independent errors following perfect gate, plus

preceding encoded gate quadratically suppressed
independent logical errors

Induction claim

-




Details in proving that mixing works

® Numerical approach (for numerical threshold lower bounds)

{ coordinate-wise upper & lower

AI‘ : unds on actual error distribution

|

~

conveXx hull of “nice”
distributions

® Existence argument (for threshold existence proofs):

® characterize convex hull of dit-wise independent distributions (a simplex)

e “pull back” actual distribution onto distribution on dits

® Must also obtain universality — CNOT and similar “linear” gates can be
efficiently simulated on a classical computer. Need a nonlinear operation

(AND or Toffoli). Use “magic states distillation.”




Conclusions

® Conclusion: Mixing argument shows that concatenation works to reduce
errors. Error events are correlated, but error correlations do not explode.

® Correlations manifest themselves as asymmetries in the conditional error

models
nice dist. nice dist.
nice dist. nice dist.
K
nice dist. nice dist.

—violates a key assumption of Knill, that all gates have symmetrical failure
models, at all levels of concatenation

® W/ith postselection, gate error rates that are asymmetrically too low can be
just as bad as error rates that are too high

® Are Knill’s simulations too optimistic?




More fault-tolerance work...

Magic states distillation (for teleporting into a universal gate set) [R’05,°06]
Optimizing ancilla verification [R’06]

Higher-order-accurate composite pulses, based on quantum search algorithm, for
eliminating noise without encoding [R’05]




Open questions in fault tolerance

Quantum computers need fault-tolerance techniques if they are to scale, but...

Current FT schemes are not good enough
® Need to increase tolerable noise rate, reduce overhead

® So far, the biggest improvements have come not from optimizations or
customizations, but rather from new quantum concepts that unify. The next
division to remove is the code concatenation levels.

Foundations:

e Extend applicability of threshold proofs

® |[mprove threshold upper bounds

Connecting full-blown fault-tolerance schemes to implementations

® Specialized, low-level error prevention (e.g., composite pulses, DFSs)




[Farhi, Goldstone, Gutmann ‘07]
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FGG quantum walk |¢;) = et ag)




FGG quantum walk |¢;) = et ag)
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FGG quantum walk [¢);) = e™t[q))
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Farhi, Goldstone, Gutmann ‘07 algorithm

® Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be

— Vuto(l
evaluated in time N72*o(D), Z1 Ty T3 Ty s T Tr T

VAVAY,
(vo)  (nawo) (e

Questions:

. Why does it work?

. How does it connect to what we
know already?

. How does it generalize?

. What kinds of problems can we
hope to solve with this technique?




Farhi, Goldstone, Gutmann ‘07 algorithm

® Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be
evaluated in time N7*o(}),

Questions: Answers:

|. Why does it work?

2. How does it connect to what we
know already? “span programs” [Karchwer/Wig.‘93]

3. How does it generalize!?

formula evaluation problem over
4. What kinds of problems can we extended gate sets

hope to solve with this technique?




Farhi, Goldstone, Gutmann ‘07 algorithm

® Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be
evaluated in time N7*o(}),

Questions: Answers:

. Why does it work?

. How does it connect to what we
know already? “span programs” [Karchwer/Wig.‘93]

. How does it generalize?

formula evaluation problem over
. What kinds of problems can we extended gate sets
hope to solve with this technique?

. No, really, WHY does it work? 1




Il o I3 Ty e X7 g

IRVEVAY
[FGG ‘07] algorithm &0 () () (o)

NAND

® Theorem ([FGG ‘07, CCJY ‘07]): A balanced
binary AND-OR formula can be evaluated
in time N”>*o(l),

Analysis by scattf[ring theory.

NAND

alanced,
ore gates

nbalanced

ND-OR [RS ¢08] algorithm
[ ACRSZ ‘07] algorithm ® Theorem: A balz’l,nced (“adversary-
bound-balanced”) formula ¢ over a
* Theorem: gate set including all three-bit gates
® An “approximately balanced” AND-OR (and more...) can be evaluated in
formula can be evaluated with O(VN) O(ADV(®)) queries (optimal!).
queries (optimal!). (Some gates, e.g., AND, OR, PARITY, can
e A general AND-OR formula can be be unbalanced—but not most!)

evaluated with N”>*°(l) queries.
Running time is N”*°(1) in each case, after preprocessing.




Recursive 3-bit majority tree
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® Theorem: A balanced (“‘adversar
bound-balanced”) formula ¢ &ver a

[RS ¢08] algorithm

gate set including all three-bit gates
(and more...) can be evaluated in

O(ADV(w)) queries (optimal!).

(Some gates, e.g.,, AND, OR, PARITY, can
be unbalanced—but not most!)

A

® Best quantum lower bound is

Q(ADV(p) = 2%) [LLS‘05]

® Expand majority into {AND, OR} gates:

MAJ3(z1, 22, 73)
== (5131 A\ 332) V (333 AN (331 V .5132))

. {AND, OR} formula size is < 54

*. O(V59) = O(2.249%)-query algorithm

[ACRSZ ‘07]

New: O(29)-query quantum algorithm




Span program definition

e Def: An n-bit span program P is*: [Karchmer, Wigderson "93]
® A target vector t in vector spaceV over C,

® n input subspaces, one for each bit

Span program P computes fp: {0,1}"—{0, 1},

fr(x) = | © tlies in the span of { subspace i : xj=1}

e Ex.:P:
1= 1

> = f = MAJ3
target t

* Not the general def.




Span program P
ﬁ Matrix
To=1

1'3:1

=1 t_<1)<10—1>
E.g., MAJ3: 0 1 1 1

NS N
4 7

&Y Y §

target t

For a given x, add edges above those
inputs evaluating to false.

& output edge

Weighted bipartite graph




Span program P

562:1

$3:1 5(31:1

E.g., MAJ3:

target t

A=0 eigenvector computes P

For a given x, add edges above those
inputs evaluating to false.

Thm: fp(x) = | & 3 eigenvalue-0
eigenvector supported on bottom
vertex.

Matrix

(1 1 0 —1
— 0 11 1
//\/ //\/ //\/

&Y Y §

Eg., xi=l x=I

16 & output edge

Weighted bipartite graph




Recursive MAJ; —

/

¢ Main Theorem:
® (x)=1 = Ag(x has A=0 eigenstate
with Q(1) support on the root. = O(29)-query (optimal!)
® (P(x)=0 = Ag has no eigenvectors recursive MAJ3
overlapping the root with |A|<1/24. evaluation algorithm




Classical Quantum
Ty Tg -+ TN
O(N O(/N) [Grover ‘96
(on ) (N) (VN) [ ]
NP
Balanced AND-OR - A
@(NO~753'--) (fan-in two) @(\/N)
[S85,SW'86,5°95] [FGG,ACRSZ ‘07]
PSPACE

General read-once AND-OR

Q(N°>1) Hw9I]
Conj.: Q(D()%733-) [sw ‘86]

Q(VN), VN - 20(/tiog N)
[BS‘04] [ACRSZ‘07]

Balanced MAJ3

Q((7/3)%), O((2.6537...)°)

[JKS *03]

)

O(2d=Nlog32)

and much more...

[RS08] |




Open:

Extensions to larger gate sets...
Unbalaned formulas over more gates...

Why do span programs work so well? Connection to adversary lower
bounds ADV(f) < ADV*(f)?

Open : More quantum algorithms based on
span programs?

Our quantum algorithm evaluates span programs. We've applied it by building
a large span program by composing small ones for all the gates.

New framework for developing quantum algorithms: Are there interesting
quantum algorithms based directly on large span programs? (E.g., graph
problems, Perfect Matching, ...) [notion of quantum recursion]




Bird’s-eye view of quantum computing

What to do How can we

with a quantum build a quantum
? ?
computer! b computer!
—_— — A A\ .
R Physics
'\COQ \fae\{b COm§|§ - =
& = = .
LR Puter SClenceComposite-pulses

—— .

Fault tolerance theory




