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• Place firmer theoretical foundations under promising schemes for quantum 
computing in the presence of noise



• Cryptography

• Breaks RSA public-key cryptosystem

• Gives unconditionally secure key 
distribution

Motivations for quantum information processing

• Quantum computing (QC)

• Extended Church-Turing Thesis:  
Anything physically efficiently 
computable can be computed 
efficiently on my laptop

• QC: Extended Church-Turing Thesis 
is false; there are exponentially-faster 
algorithms (for interesting problems) 
by using quantum mechanics

• Simulation & modeling

• for quantum devices, 

• chemistry,

• materials (high-T superconductors, 
new states of matter?)

• Quantum sensing

• Precise measurement and 
lithography

• Atomic clocks

• Basic science

• Investigate measurement/
decoherence, quantum/classical 
boundary

• Test qu. mechanics on new scales

(but no free lunch…)



• “Qubit”:

• State of n qubits = unit vector in C2n

Quantum information

0 1

|α0|2 + |α1|2 = 1

(
α0

α1

)
= α0|0〉 + α1|1〉

(αx)x∈{0,1}n



• “Qubit”:

• State of n qubits = unit vector in C2n

• Computation by local gates, rotate the state vector

Quantum information

0 1

(
α0

α1

)
= α0|0〉 + α1|1〉

|α0|2 + |α1|2 = 1
(αx)x∈{0,1}n

(α′
x)x∈{0,1}n

• Observing/measuring system collapses it to a single classical bitstring x

• No exponential parallelism

• Have to “finesse” the quantum system to output the classical 
information you want



Classical information processing

Quantum information processing

• Classical state is a vector of probabilities:

• Valid operations are stochastic maps 

{px}x∈{0,1}n px ≥ 0
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• More details: 

• Locality (which unitaries are efficient)

• Measuring the system gives outcome x with probability 

• (no exponential parallelism, any more than classically, finesse is needed)

• (quantum information processing generalizes the classical model)

• Quantum state is also a vector

• Valid operations are rotations (unitaries)

Q.C. not just 

classical computing with 

tiny transistors, uses the laws 

of quantum mechanics

The universe is quantum 

(we think).

l1 norm

l2 norm

The universe is quantum mechanical but it 
looks classical because of noise…



Exponential 

speedups

Polynomial

Quantum algorithms

Approx. Jones polynomial

Simulation

...of  dynamics of  
physical quantum systems
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• Ion traps

• can trap and cool 16-18 qubits

• can entangle 6-8 qubits in a trap

• microfabrication of trap arrays on chips, dealing 
with increased noise

• in next 2-3 years may be able to compute with 
40-60 qubits

• challenges: controlling thousands of traps with 
dozens of detection channels and lasers along 
the surface of the chip…

• Superconducting qubits

• 2 qubit local interactions 
becoming routine

• nonlocal movement
& interactions now possible

• noise levels seem promising…

Quantum computing in 2008

• Other technologies: 

• Photonic qubits, quantum dots…
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• Scaling these systems is a major engineering challenge

• But the basic technologies have been proven, 
there are intermediate rewards

• And there are no known fundamental difficulties, except… 

• Factoring a 2048-bit number uses

• 6 x 1011 gates on 

• 10,000 qubits

• Need error    1/1012 per gate

Common obstacle is noise!

!

K-bit number:
  72 K3 gates
  5 K qubits

versus eK⅓classically

• Physically reasonable noise rates are ~1% error per gate, or maybe 0.1%

∴ Only 100 operations before an error can occur and propagate through the 
system



• Schrödinger’s cat:

Noise is fundamental problem for quantum 
computers: entangled systems are fragile

• “Both dead and alive,” in superposition; but collapses to one or the other 
when observed

• A single stray photon can collapse it — and also analogous states in a 
quantum computer

• Physically reasonable noise rates are ~1% error per gate, or perhaps 0.1%

live cat

dead cat

( 1√
2
,

1√
2

)

1√
2

(|live cat〉+ |dead cat〉)
i.e.



1. Engineering

• Not enough— noise is 
fundamental in quantum 
systems

2. Fault tolerance

• Enough to engineer the noise 
rate beneath a constant 
threshold, 

• Then effective noise rate can 
be decreased arbitrarily (and 
efficiently) using error-
correcting codes

[Von Neumann ’56]

How to deal with noise?



[Von Neumann ‘56]
Classical fault tolerance

Make fault-tolerant a circuit consisting of a universal 
set of operations, some faulty:

0

1 ,
,

Perfect op’s:

Faulty op’s: AND, NOT

 

 

 

0
0
0

1
1
1

0
0
1

Transversal
gate application

 

 

 

 

 

 

ran
dom

per
mu
tat
ion

ran
dom

per
mu
tat
ion

1
1
1

0
0
0

Error correction

0L =

1L =

Encoding

0
0
1

0 1

1

fraction of 1’s



What’s different quantumly?

• Quantum problems: 

• Quantum states are continuous, not discrete—need to protect against 
continuous errors

• No-cloning theorem: Can’t copy a quantum state                      , so no 
immediate analog of the repetition code 

• But quantum ECCs do exist!  [Shor ’95]

0

1

|ψ〉 "→ |ψ〉|ψ〉
0 !→ 0n, 1 !→ 1n



E(|ψ〉)

noise

encoded data

Operational def. of QECC

• Quantum problems: 

• Quantum states are continuous, not discrete—need to protect against 
continuous errors

• No-cloning theorem: Can’t copy a quantum state                      , so no 
immediate analog of the repetition code 

• But quantum ECCs do exist!  [Shor ’95]  Operationally, 

|ψ〉 "→ |ψ〉|ψ〉
0 !→ 0n, 1 !→ 1n

|ψ〉 E(|ψ〉)
encode

recoverN⊗m
(
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)
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Quantum error-correcting codes exist

• Although quantum states are continuous, correcting a discrete set of errors 
(bit and phase flips) suffices

• Based on classical linear ECCs: QECC comes from two linear ECCs 

( α
β ) !→ ( α

−β )

( α
β ) !→ ( β

α )
bit flip error

phase flip error

0

1 (one for bit flips, one for phase flips)



E(|ψ〉)

noise
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Quantum error-correcting codes exist

• Although quantum states are continuous, correcting a discrete set of errors 
(bit and phase flips) suffices

• Based on classical linear ECCs: QECC comes from two linear ECCs 

encode

• How can we use these codes?

• Need operations as well as memory

• Error recovery must be resilient to faults during recovery

• How to encode into them in the first place??  (qu problem)

• Over 19% depolarizing error 
prob. * 4/3 = over 25%

(one for bit flips, one for phase flips)
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• Compile ideal circuit into “fault-
tolerant” (noise-resistant) version, 
starting with small QECC:

• Concatenate (i.e., repeat) for arbitrarily 
improved reliability (so arbly long calcs), if 
starting below a constant noise threshold

• Problem: Noise model at encoded level is 
not the same as the physical noise model!



Abridged History of Quantum Fault Tolerance

• 1996-97: First fault-tolerance results: QECCs, threshold proofs
Shor, Steane, Calderbank, Aharonov, Ben-Or, Kitaev, Knill, 
Laflamme, Zurek, …

• Proved existence of some positive tolerable noise rate using 
concatenated qu. codes of distance ≥5

• No explicit lower bounds on tolerable noise rate, but 
estimates were 10-6-10-5 noise per gate

• Moral: Fault tolerance makes quantum computers plausible 
in the real world

"Dark Ages"
-D. Gottesman



Abridged History of Quantum Fault Tolerance

• 1997: Aharonov/Ben-Or, Kitaev: Prove 
positive tolerable noise rate for codes 
of distance d≥5

Proofs Estimates & 
simulations

• 2002: Steane: Correct bit flip errors all at 
once, and then phase flip errors all at once

• based on simulations, estimates 3x10-3 
tolerable noise rate per gate

• 2D locality constraint

• Szkopek et al ‘04

• Svore-Terhal-DiVincenzo ‘05

Simulations using distance-3 codes

• Basic estimates:

• Aharonov & Ben-Or ‘97

• Gottesman ‘97

• Knill-Laflamme-Zurek ‘98

• Preskill ‘98

• Optimized estimates:

• Zalka ‘97

• R ‘04

• Svore-Cross-
Chuang-Aho ‘05

• 2005: R, Aliferis/Gottesman/Preskill: 
First explicit numerical threshold lower 
bounds, threshold for distance-3 codes



Improved threshold result
– Modification of standard error correction 

scheme increases estimated threshold 
3x, to almost 1%.

[R ‘04]

Abridged History of Quantum Fault Tolerance

• 1997: Aharonov/Ben-Or, Kitaev: Prove 
positive tolerable noise rate for codes 
of distance d≥5

Proofs Estimates & 
simulations

• 2002: Steane: Correct bit flip errors all at 
once, and then phase flip errors all at once

• based on simulations, estimates 3x10-3 
tolerable noise rate per gate• 2005: R, Aliferis/Gottesman/Preskill: 

First explicit numerical threshold lower 
bounds, threshold for distance-3 codes

• Postselection
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Error-detection-based fault-tolerance
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• Compile ideal circuit into “fault-
tolerant” (noise-resistant) version, 
starting with small QECC: !"#$

• In simulations, tolerates much higher noise 
rates than error-correction-based FT schemes

• But (previously) no proven positive threshold!



3

example a 3-dimensional lattice ion trap computer with
lower-level encoding (like a DFS or code against qubit
loss [7]).

Steane’s error correction procedure [5] was developed
in a model where memory errors might be significant; he
ran simulations with a memory error rate from γ/100 to
γ. For a more fair comparison, we evaluated several small
optimizations to his procedure effective in the low mem-
ory error rate regime. Steane extracts one syndrome,
aborting error correction if that syndrome is trivial. Oth-
erwise, he extracts two more syndromes, and looks for
two agreeing syndromes. We modify this to always ex-
tract one syndrome at a time, and to always abort after
retrieving a trivial syndrome – i.e., if the first two syn-
dromes agree or if the second syndrome is trivial, don’t
extract a third one.

B. Simulation method

We largely follow the simulation method and statis-
tical procedures as described by Steane [5]. The simu-
lator is fast and efficiently scalable since for each bit it
only needs to store either I, X , Y or Z. Although an-
cilla states are stabilizer states, there is no need to keep
track of the stabilizer with a simulator like CHP [8] be-
cause the stabilizer is always well known. Even though
data blocks may have arbitrary encoded states, there is
no need to keep track of the exact, exponentially large
quantum state with a simulator like QuIDDPro/D [9],
because we only care about the error correction part of
the circuit.

To increase the credibility of Steane’s simulation
method, we additionally track errors between 49-bit data
blocks. This is important because even blocks which have
just been corrected still have some errors. Every round
we apply a transverse CNOT gate to or from another
data block. We then correct X and Z errors in a random
order which determines whether the block will be the
control or target of the next round’s transverse CNOT
gate. To implement this, if a block has not crashed we
save it in a list for later use. As a detail, we only save
blocks after the third round, to allow the distribution of
errors to converge.

C. Results

Figure 4 shows that the physical error rate is reduced
slightly. This slight reduction is largely because of the
dramatic reduction in the logical error rate (2 or 3 bit
physical errors within a block) shown in Fig. 5.

Figure 6 shows the effect of the new error correction
procedure on the crash rate compared to Steane’s proce-
dure. (A crash is defined as a set of physical errors which
perfect error correction would project to a logical error.)
To read off an approximate threshold from the figure, we
take the intersection of the crash rate curve with the line

Physical level 1 ancilla errors
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Logical level 1 ancilla errors
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Effect on threshold
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FIG. 6:

of slope 3/4 (the rate at which X , Y or Z physical er-
rors occur is 3/4 the depolarization rate). This is only
an approximate result, since the error model at the next
higher level is not the same as the physical depolarization
error model. In particular X and Z logical errors are less
correlated than X and Z physical errors.

There is a loss of efficiency at higher error rates, but at
rates at or below the old threshold, the efficiency is actu-
ally just as good or better. See Fig. 7, where preparing a
Steane ancilla at zero error rate is defined to take one unit

Effect of 
postselection in 

ancilla preparation
[R ‘04]
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C. Results
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Logical level 1 ancilla errors
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Effect on threshold
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of time. Since the error rate drops rapidly with concate-
nation below the threshold, the efficiency loss will show
up in practice only at the lowest concatenation levels.

Further optimization could reduce this overhead. Its
exponential dependence on the error rate makes it sen-
sitive to small changes to which the threshold itself is
insensitive. For example, we found that modifying the
7-bit ancilla verification to only check only three of the
four relevant stabilizers – an idea from [4] – reduced the
overhead by about a factor of four at 1% error rate.

However, the poor efficiency at high error rates proba-
bly rules out some generalizations of this ancilla prepara-
tion scheme. For example, we expect it will be impracti-
cal to apply the scheme to the 343 bit code gotten by con-
catenating the Hamming code twice, or to the [[23, 1, 7]]
Golay code concatenated with itself.

V. OPTIMIZED ANCILLA PREPARATION

How much more can optimizations of this type gain
us? We ran the same simulations with a 49-bit ancilla
perfectly prepared, except each bit was subject to a single
possibility of error, then each block was checked for X and

Z errors. If an error was detected, the entire ancilla was
rejected. For this ideal ancilla, logical errors are much
less correlated than in our preparation procedure.

The simulations showed almost no improvement what-
soever in the threshold. Our ancilla preparation proce-
dure is already quite well optimized, and the crashes that
still occur cannot generally be blamed on a faulty ancilla.
Hence further optimizations of the error correction pro-
cedure for the [[49, 1, 9]] code will need to do more than
improve ancilla preparation.

We are not able to simulate rejection ancilla prepa-
ration for the Golay code concatenated with itself; too
many ancillas must be thrown away for every good an-
cilla. (A crude estimate puts the overhead at 1050, al-
though optimizations can reduce this enormously.) We
instead simulated preparation of ideal ancillas as above
for the Hamming code, with the expectation that results
would be close to the actual ancilla preparation proce-
dure. We found that the threshold increases to about
1%. While 1050 is impractically large, it is still a con-
stant. Theoretically, it is of interest how much higher the
threshold can be increased by using different codes, more
concatenation, or improved syndrome interpretation.

VI. CONCLUSION

For quantum computers to become a reality, highly
efficient coding against errors is essential. We have pro-
posed an optimized encoded ancilla preparation scheme
for the concatenated Hamming code. Simulations show
that the improved scheme decreases the crash rate by
almost two orders of magnitude, and increases the fault-
tolerant threshold significantly. There is however a loss
of efficiency at higher error rates.

Very recent independent work by Knill [10] uses a sim-
ilar idea to increase the threshold. Further research is
needed to make these schemes more practical: still more
efficient, and applicable to more general error models.
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Improved threshold result
– Modification of standard error correction 

scheme increases estimated threshold 
3x, to almost 1%.

Knill’s threshold result
– Estimated 3-6% threshold for 

independent depolarizing errors.

[R ‘04]

[Knill ‘04]

Abridged History of Quantum Fault Tolerance

• 1997: Aharonov/Ben-Or, Kitaev: Prove 
positive tolerable noise rate for codes 
of distance d≥5

Proofs Estimates & 
simulations

• 2002: Steane: Correct bit flip errors all at 
once, and then phase flip errors all at once

• based on simulations, estimates 3x10-3 
tolerable noise rate per gate• 2005: R, Aliferis/Gottesman/Preskill: 

First explicit numerical threshold lower 
bounds, threshold for distance-3 codes

• Postselection

• Postselection + Teleportation
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* decoding measurements using classical computer



1. Error correction   2. Computation
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* operation U should be “C2”
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• Teleportation allows for correcting bit flip errors, phase flip errors, and doing 
one step of computation all at once. 

• (Provided that we can prepare reliably the necessary resource states.)

Error correction + Encoded Computation
Applying teleportation to fault tolerance



• Teleportation allows for correcting bit flip errors, phase flip errors, and doing 
one step of computation all at once. 

• (Provided that we can prepare reliably the necessary resource states.)

• Note: We can prepare very good ancilla states, e.g., throwing away all ancillas 
with any detected errors (“postselection”).  We wouldn’t want to throw away 
the data—but the data is isolated from the ancilla state.

Teleported EC + encoded computation
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• Teleportation allows for correcting bit flip errors, phase flip errors, and doing one step 
of computation all at once. 

• (Provided that we can prepare reliably the necessary resource states.)

• Note: We can prepare very good ancilla states, e.g., throwing away all ancillas with 
any detected errors (“postselection”).  We wouldn’t want to throw away the data—
but the data is isolated from the ancilla state.

Teleported EC + encoded computation
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Quantum 
disadvantages

• States are continuous (i.e., analog)
• No-cloning theorem

Quantum 
advantage!

• Quantum teleportation allows 
isolating the data from errors



Uncontrolled

50% 50%

Controlled

Uncontrolled

1% 1%

Controlled

Proofs based on controlling events most of the time, 
with occasional failures

Controlled
(well-bounded)

Uncontrolled
(worst-case)

99%

1%

Most of the time, errors are detected — 
but (counterintuitively) survival probability for 
uncontrolled portion could be much higher 

Uncontrolled fraction of probability 
mass increases exponentially after 
renormalizing!

Renormalization frustrates previous proofs

• Problem: Although Knill estimated tolerable noise rate was 
3-6%, proofs could not show that postselection-based schemes 
tolerated any noise at all!



•  Idea: Maintain inductive invariant of goodness.  (A level-k block is good “if it 
has at most one bad level-(k-1) subblock.”)

• Problems: 

• Inefficient analysis: Logical error rate for a distance-d code drops as c p(d-1)/2 instead 
of c p(d+1)/2 

∴ Can’t hope for very good rigorous lower bounds on the noise threshold

• No threshold at all for concatenated d=3 codes, or for postselection-based 
schemes

EC
X

good bad
X
X (one level k-1 error is already too many) 

Intuition for Aharonov/Ben-Or’s proof

EC
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• Existence of tolerable noise rates for many 
fault-tolerance schemes, including:

• Schemes based on error-detecting codes, 
not just ECCs (Knill-type)

• Distance-3 codes, and more efficient 
“Fibonacci”-type schemes (d=2 codes)

• Tolerable threshold lower bounds*

• 0.1% simultaneous depolarization noise†

• 1.1%, if error model known exactly

* Subject to minor numerical caveats † Versus .02% best lower bound for error-
correction-based FT scheme [Aliferis, Cross 2006]

Results

•!"#$%&'( !−→
•

ED•
•!"#$%&'(

ED!"#$%&'( !"#$%&'(

• Problem: Although Knill estimated tolerable noise rate was 
3-6%, proofs could not show that postselection-based schemes 
tolerated any noise at all!

• Renormalizing the error distribution leads to bad correlations.

[R ’06]



Techniques

• Main new technique is to maintain close control over the 
distribution of errors in the quantum computer
(Previous threshold proofs had used a “worst-case” criterion 
for error behavior that blew up during renormalization.)

• Rewrite true error distribution as a mixture of nearby 
distributions whose error distributions lack nasty correlations

true dist.

nice dist.

nice dist.

nice dist.

true dist.

nice dist.

true dist.

nice dist.

nice dist.

nice dist.



• Def: Noisy encoder = perfect encoder, followed by bitwise-indep. noise at rates ≤p.

Ẽ

Bitwise-independent noise is nice…

E=

?=

bitwise-independent errors 
preceding encoded gate

bitwise-independent errors 
following perfect gate, plus 
quadratically suppressed 

independent logical errors

Induction claim?

p
p
p

(tool for analysis—such encoders don’t actually exist)

Encoded
gate

Error 
detectionẼ Perfect

gate Ẽc p2

(much stronger than 
Aharonov/Ben-Or’s claim)
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perfect perfect

?=Encoded
gate

Error 
detectionẼ Perfect

gate Ẽc p2

• Since the error model is preserved (level-one logical errors have the same form as 
physical errors), the analysis can be repeated to give a threshold

⇒



• Def: Noisy encoder = perfect encoder, followed by bitwise-indep. noise at rates ≤p.

Ẽ

Bitwise-independent noise is nice…

E=

bitwise-independent errors 
preceding encoded gate

bitwise-independent errors 
following perfect gate, plus 
quadratically suppressed 

independent logical errors

Induction claim

p
p
p

(tool for analysis—such encoders don’t actually exist)

Encoded
gate

Error 
detectionẼ Perfect

gate Ẽc p2

(much stronger than 
Aharonov/Ben-Or’s claim)

==



• Numerical approach (for numerical threshold lower bounds) 

• Existence argument (for threshold existence proofs): 

• characterize convex hull of dit-wise independent distributions (a simplex)

• “pull back” actual distribution onto distribution on dits

• Must also obtain universality — CNOT and similar “linear” gates can be 
efficiently simulated on a classical computer.  Need a nonlinear operation 
(AND or Toffoli).  Use “magic states distillation.”

Details in proving that mixing works

coordinate-wise upper & lower 
bounds on actual error distribution

convex hull of “nice” 
distributions



• Conclusion: Mixing argument shows that concatenation works to reduce 
errors.  Error events are correlated, but error correlations do not explode.

• Correlations manifest themselves as asymmetries in the conditional error 
models

—violates a key assumption of Knill, that all gates have symmetrical failure 
models, at all levels of concatenation

• With postselection, gate error rates that are asymmetrically too low can be 
just as bad as error rates that are too high

• Are Knill’s simulations too optimistic?

Conclusions
true dist.

nice dist.

true dist.

nice dist.

nice dist.

nice dist.

true dist.

nice dist.

true dist.

nice dist.

nice dist.

nice dist.



• Magic states distillation (for teleporting into a universal gate set)

• Optimizing ancilla verification

• Higher-order-accurate composite pulses, based on quantum search algorithm, for 
eliminating noise without encoding

More fault-tolerance work…

[R’05]

[R’06]

[R’05, ‘06]



• Quantum computers need fault-tolerance techniques if they are to scale, but…

• Current FT schemes are not good enough

• Need to increase tolerable noise rate, reduce overhead

• So far, the biggest improvements have come not from optimizations or 
customizations, but rather from new quantum concepts that unify.  The next 
division to remove is the code concatenation levels.  

• Foundations: 

• Extend applicability of threshold proofs 

• Improve threshold upper bounds

• Connecting full-blown fault-tolerance schemes to implementations

• Specialized, low-level error prevention (e.g., composite pulses, DFSs)

Open questions in fault tolerance



[Farhi, Goldstone, Gutmann ‘07]

Scatter a wave against the tree…



FGG quantum walk |ψt〉 = eiAGt|ψ0〉



FGG quantum walk |ψt〉 = eiAGt|ψ0〉



ϕ(x) = 0 ϕ(x) = 1

Wave transmits!Wave reflects!

FGG quantum walk |ψt〉 = eiAGt|ψ0〉

x11 = 0x11 = 1



Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be 
evaluated in time N½+o(1).

Questions:

1. Why does it work?

2. How does it connect to what we 
know already?

3. How does it generalize?

4. What kinds of problems can we 
hope to solve with this technique?

NAND

NAND

NAND

NAND NAND NAND NAND

x1 x2 x3 x4 x5 x7x6 x8



Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be 
evaluated in time N½+o(1).

Questions: Answers:

“span programs” [Karchwer/Wig. ‘93]

formula evaluation problem over 
extended gate sets

1. Why does it work?

2. How does it connect to what we 
know already?

3. How does it generalize?

4. What kinds of problems can we 
hope to solve with this technique?



Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND formula can be 
evaluated in time N½+o(1).

Questions:

“span programs” [Karchwer/Wig. ‘93]

formula evaluation problem over 
extended gate sets

Answers:

1. Why does it work?

2. How does it connect to what we 
know already?

3. How does it generalize?

4. What kinds of problems can we 
hope to solve with this technique?

5. No, really, WHY does it work? ???



• Theorem ([FGG ‘07, CCJY ‘07]): A balanced 
binary AND-OR formula can be evaluated 
in time N½+o(1).

• Theorem: 

• An “approximately balanced” AND-OR 
formula can be evaluated with O(√N) 
queries (optimal!).

• A general AND-OR formula can be 
evaluated with N½+o(1) queries.

unbalanced 
AND-OR

Analysis by scattering theory.

[FGG ‘07] algorithm
NAND

NAND

NAND

NAND NAND NAND NAND

x1 x2 x3 x4 x5 x7x6 x8

[ACRŠZ ‘07] algorithm

Running time is N½+o(1) in each case, after preprocessing.

balanced,
more gates

[RŠ ‘08] algorithm
• Theorem: A balanced (“adversary-

bound-balanced”) formula φ over a 
gate set including all three-bit gates 
(and more…) can be evaluated in 
O(ADV(φ)) queries (optimal!). 

(Some gates, e.g., AND, OR, PARITY, can 
be unbalanced—but not most!)



• Best quantum lower bound is            
                                          [LLS‘05]

• Expand majority into {AND, OR} gates:

∴ {AND, OR} formula size is ≤ 5d

∴ O(√5d) = O(2.24d)-query algorithm

x1

MAJ MAJMAJ MAJ MAJMAJ

x1 x1

MAJ

MAJ

MAJ

MAJ

MAJ

ϕ(x)

MAJMAJ

...

Recursive 3-bit majority tree

< 7/3 • [Jayram, Kumar & Sivakumar ‘03]

d

3d

MAJ3(x1, x2, x3)
= (x1 ∧ x2) ∨ (x3 ∧ (x1 ∨ x2))

Ω
(
ADV(ϕ) = 2d

)

[ACRSZ ‘07]

• New: O(2d)-query quantum algorithm

[RŠ ‘08] algorithm
• Theorem: A balanced (“adversary-

bound-balanced”) formula φ over a 
gate set including all three-bit gates 
(and more…) can be evaluated in 
O(ADV(φ)) queries (optimal!). 

(Some gates, e.g., AND, OR, PARITY, can 
be unbalanced—but not most!)



• Def: An n-bit span program P is*: 

• A target vector t in vector space V over C, 

• n input subspaces, one for each bit 

Span program P computes fP: {0,1}n→{0,1}, 
      fP(x) = 1 ⇔  t lies in the span of { subspace i : xi=1}

• Ex.: P:

Span program definition

[Karchmer, Wigderson ’93]

x1

x2
x3

target t
➡ fP = MAJ3 

= 1
= 1

= 1

* Not the general def.



Weighted bipartite graph

1 0
-1 1

1 1

output edge

Span program P

E.g., MAJ3:
t =

(
1
0

) (
1 0 −1
1 1 1

)
x1

x2
x3

target t

= 1
= 1

= 1

Matrix

x 1
=

1

x 2
=

1

x 3
=

1

For a given x, add edges above those 
inputs evaluating to false.  



Span program P

E.g., MAJ3:

input edges

t =
(

1
0

)

1 0
-1 1

1 1

(
1 0 −1
1 1 1

)
x1

x2
x3

target t

= 1
= 1

= 1

Matrix

x 1
=

1

x 2
=

1

x 3
=

1

Weighted bipartite graph

λ=0 eigenvector computes P

For a given x, add edges above those 
inputs evaluating to false.  

Thm: fP(x) = 1         eigenvalue-0 
eigenvector supported on bottom 
vertex.

⇔ ∃

output edge

x1=1 x2=1 x3=0E.g.,

-1 0

0

0 0

1

1



⇒O(2d)-query (optimal!) 
recursive MAJ3 
evaluation algorithm

Recursive MAJ3                             .MAJ

MAJ MAJMAJ MAJ MAJMAJ

MAJ

MAJ

MAJ

MAJ

MAJ

ϕ(x)

MAJMAJ

• Main Theorem:

• φ(x)=1     AG(x) has λ=0 eigenstate 
with Ω(1) support on the root.

• φ(x)=0     AG(x) has no eigenvectors 
overlapping the root with |λ|<1/2d.

⇒

⇒

1 0
-1 1

1
1

aO

bO bC

a1
a2 a3

b1 b2 b3

input edges



x1

MAJ MAJMAJ MAJ MAJMAJ

x1 x1

MAJ

MAJ

MAJ

MAJ

MAJ

ϕ(x)

MAJMAJ

...

Balanced MAJ3

OR

x2x1 xN· · ·

Classical

Θ(N)

AND

OR OR

AND ANDAND AND

x6 x8x7x5x4x2 x3x1

Θ(N0.753…)
[S‘85, SW‘86, S‘95]

General read-once AND-OR

Balanced AND-OR

Conj.: Ω(D(f)0.753…) [SW ‘86]

[Nisan ‘91]: R2(f) = Ω(D(f)⅓)

Ω(N0.51) [HW‘91]

Ω((7/3)d), O((2.6537…)d)
[JKS ’03]

Quantum

Θ(√N) [Grover ‘96]

...

(fan-in two)

Θ(2d=Nlog32)

and much more…

Θ(√N)

Ω(√N), √N⋅2O(√(log N))

[FGG, ACRŠZ ‘07]

[ACRŠZ ‘07][BS ‘04]

[RŠ ‘08]

NP

PSPACE



Open ?: More quantum algorithms based on 
span programs?

• Our quantum algorithm evaluates span programs.  We’ve applied it by building 
a large span program by composing small ones for all the gates.

• New framework for developing quantum algorithms: Are there interesting 
quantum algorithms based directly on large span programs?  (E.g., graph 
problems, Perfect Matching, …) [notion of quantum recursion]

Open: 

• Extensions to larger gate sets…

• Unbalaned formulas over more gates…

• Why do span programs work so well?  Connection to adversary lower 
bounds ADV(f) ≤ ADV±(f)?
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