Any AND-OR formula of size N can be evaluated in time $N^{\frac{1}{2}+o(1)}$ on a quantum computer

Andrew Childs, Ben Reichardt, Robert Špalek, Shengyu Zhang

NAND formulas

• NAND gate (NOT-AND):

NAND "formula" = tree of nested NAND gates

• **Problem**: Evaluate $\varphi(x)$, given a function for evaluating the x_i (oracle access to x).

Problem motivations

- Problem: Evaluate $\varphi(x)$, given a function for evaluating the x_i (oracle access to x).
- Motivations:
 - Equivalent to S = {AND, OR, NOT} formula trees
 - Playing "chess" (two-player games)
 - Nodes ↔ game histories
 - White wins if ∃ move s.t. ∀ black moves, ∃ move s.t. ..
 - Decision version of min-max tree evaluation
 - inputs are real numbers
 - want to decide if minimax is ≥10 or not

Results

• **Problem**: Evaluate $\varphi(x)$, given a function for evaluating the x_i (oracle access to x).

 $x_1 \ x_2 \ x_3 \ x_4$

 x_6

 x_5

 x_9 x_1 x_5 x_9

Motivations:

- Equivalent to S = {AND, OR, NOT} formula trees
- Playing "chess" (two-player games)
 - Nodes ↔ game histories
 - White wins if \exists move s.t. \forall black moves, \exists move s.t. \therefore
- Decision version of min-max tree evaluation
 - inputs are real numbers
 - want to decide if minimax is ≥10 or not

Results:

- $N^{\frac{1}{2}+o(1)}$ -time quantum algorithm (N= #leaves) for general trees (after efficient preprocessing independent of x)
- $O(\sqrt{N})$ -query quantum algorithm for "approximately balanced" trees

Problem history (1/2)

- Problem: Evaluate $\varphi(x)$, given a function for evaluating the x_i .
- Results:
 - $N^{\frac{1}{2}+o(1)}$ -time quantum algorithm (N= #leaves) for general trees (after efficient preprocessing independent of x)
 - $O(\sqrt{N})$ -query quantum algorithm for "approximately balanced" trees (optimal!)
- Classical history

$$\log_2 \lambda_{max} \begin{pmatrix} 0 & d \\ 1 & \frac{d-1}{2} \end{pmatrix})$$

- Randomized (Las Vegas) algorithm in E-time O(N^{0.754}) for balanced binary trees [Spin 'OE Salar 2 NA"] binary trees [Snir '85, Saks & Wigderson '86]
 - Flip coins to decide which subtree to evaluate next, short-circuit
 - Optimal [Santha '95]

Problem history (2/2)

- Classical history
 - Deterministic algorithm requires time N
 - Randomized (Las Vegas) algorithm in E-time $\Theta(N^{0.754})$ for balanced binary trees [Snir '85, Saks & Wigderson '86, Santha '95]

 x_N

- Quantum history
 - Grover search: $O(\sqrt{N})$ -query quantum algorithm to evaluate (with constant error, $O(\sqrt{N} \log \log N)$ -time) [Grover '96, '02]
 - Evaluates regular depth-d tree in \sqrt{N} O(log N)^{d-1} queries [BCW '98]
 - Extended to faulty oracles by [Høyer, Mosca, de Wolf '03] \Rightarrow O(\sqrt{N} c^d) queries
 - Adversary lower bound $\Omega(\sqrt{N})$ queries [Barnum, Saks '04]
 - Farhi, Goldstone, Gutmann 2007: Breakthrough continuous-time quantum algorithm for evaluating balanced binary NAND tree in N^{1/2+o(1)} queries & time

- **Theorem** ([FGG '07, CCJY '07]): A balanced binary NAND tree can be evaluated in time $N^{\frac{1}{2}+o(1)}$.
- Attach an infinite line to the root...

- **Theorem** ([FGG '07, CCJY '07]): A balanced binary NAND tree can be evaluated in time $N^{\frac{1}{2}+o(1)}$.
- Attach an infinite line to the root...

- **Theorem** ([FGG '07, CCJY '07]): A balanced binary NAND tree can be evaluated in time $N^{\frac{1}{2}+o(1)}$.
- Attach an infinite line to the root
- Add edges above leaf nodes evaluating to one...

- **Theorem** ([FGG '07, CCJY '07]): A balanced binary NAND tree can be evaluated in time $N^{\frac{1}{2}+o(1)}$.
- Attach an infinite line to the root
- Add edges above leaf nodes evaluating to one...

- **Theorem** ([FGG '07, CCJY '07]): A balanced binary NAND tree can be evaluated in time $N^{\frac{1}{2}+o(1)}$.
- Attach an infinite line to the root
- Add edges above leaf nodes evaluating to one

Talk outline

- Introduction
 - Motivation, classical & quantum problem history
 - Farhi, Goldstone, Gutmann breakthrough algorithm
- Results [Childs, Reichardt, Špalek, Zhang '07]:
 - $O(\sqrt{N})$ -query quantum algorithm for "approximately balanced" trees
 - $N^{\frac{1}{2}+o(1)}$ -time quantum algorithm (N= #leaves) for general trees (after efficient preprocessing independent of x)
- Optimal balanced tree algorithm
- Proof sketch
 - Szegedy correspondence
 - Zero-energy proof sketch
- Extension to unbalanced trees
 - Preprocessing
 - Weights
- Extensions & Open problems

Optimal balanced tree algorithm

- Start with classical uniform random walk on balanced tree
 - Make leaves (inputs) evaluating to I probability sinks
 - Add two nodes r' and r" at bottom, bias the coin at r'
- Quantize this walk...

- Start at r"
- Apply phase estimation to precision I/\sqrt{N}
 - If phase is 0 or π , output 0
 - Otherwise output I

Optimal balanced tree algorithm

- Start with classical uniform random walk on balanced tree
 - Make leaves (inputs) evaluating to I probability sinks
 - Add two nodes r' and r" at bottom, bias the coin at r'
- Quantize this walk...
 - Classically, flip a three-sided "coin" to determine next step
 - Quantumly, apply (Grover) diffusion operator to the coin

$$\circ = 0$$

$$\bullet = |$$

- Start at r"
- Apply phase estimation to precision I/\sqrt{N}
 - If phase is 0 or π, output 0
 - Otherwise output I

Quantum walks

- $\bullet \quad \text{Hilbert space } \mathbf{C}^{\vec{E}} = \Big\langle |v,w\rangle : (v,w) \in E \Big\rangle \subset \mathbf{C}^{V \times V} = \Big\langle |v,w\rangle : v,w \in V \Big\rangle$
- $U = \text{Step} \cdot \text{Flip}$
 - Step = $\sum |v, w\rangle\langle w, v|$ switches direction of edges
 - Flip = $\sum_{v,v}^{v,v} |v\rangle\langle v| \otimes \operatorname{Reflection}(|p(v)\rangle)$ diffuses outgoing edges from v

•
$$|p(v)\rangle = \sum_{w \sim v} \sqrt{p_{v,w}} |w\rangle$$
 $\left(\sum_{w} p_{v,w} = 1\right)$

$$P = \sum_{v,w} \sqrt{p_{v,w} p_{w,v}} |v\rangle\langle w|$$

Proof: Szegedy correspondence

- $\bullet \quad \text{Hilbert space } \mathbf{C}^{\vec{E}} = \Big\langle |v,w\rangle : (v,w) \in E \Big\rangle \subset \mathbf{C}^{V \times V} = \Big\langle |v,w\rangle : v,w \in V \Big\rangle$
- $U = \text{Step} \cdot \text{Flip}$
 - Step = $\sum |v, w\rangle\langle w, v|$ switches direction of edges
 - Flip = $\sum_{v,v}^{v,v} |v\rangle\langle v| \otimes \operatorname{Reflection}(|p(v)\rangle)$ diffuses outgoing edges from v

$$|p(v)\rangle = \sum_{w \sim v} \sqrt{p_{v,w}} |w\rangle \qquad \left(\sum_{w} p_{v,w} = 1\right)$$

• Correspondence between spectrum and eigenvalues of

Proof: Szegedy correspondence

Correspondence between spectrum and eigenvalues of

Coined unitary
U in 2|E|
dimensions

Classical random walk transition matrix
P in V dimensions

"Szegedization" applied

Quantum coined walk U on:

Adjacency matrix A_G of:

- Adjacency matrix A_G has eigenvalue E=0 eigenvector with $\Omega(1)$ support on r" when $\phi(x)$ =0.
- A_G has no eigenvalues $E \in (-1/\sqrt{N}, 1/\sqrt{N})$ with support on r" when $\phi(x) = 0$.

- Adjacency matrix A_G has eigenvalue E=0 eigenvector with $\Omega(I)$ support on Γ when Γ 0.
- A_G has no eigenvalues $E \in (-1/\sqrt{N}, 1/\sqrt{N})$ with support on r" when $\phi(x) = 0$.
- .. Phase estimation to precision I/\sqrt{N} (time \sqrt{N}), starting at r", evaluates $\phi(x)$.

Proof

• E=0 constraint...

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

○ =0

● = |

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

 \circ =0

●=|

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

 \circ =0

● = |

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

- Claim I: If $\phi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$
- Claim 0: If $\phi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

 \circ =0

• Claim I: If $\phi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$

● = |

• Claim 0: If $\varphi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

 \circ =0

• Claim I: If $\phi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$

● = |

• Claim 0: If $\varphi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

Proof

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

 \circ =0

• Claim I: If $\phi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$

• Claim 0: If $\varphi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

- Claim I: If $\phi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$
- Claim 0: If $\varphi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

- Claim I: If $\varphi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$.
- Claim 0: If $\phi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

• E=0:
$$\forall v: \sum_{w \sim v} \alpha_w = 0$$

- Claim I: If $\varphi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$.
- Claim 0: If $\phi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

$$NAND(x_1, \dots, x_k) = 1 - \prod_i x_i$$

- Theorem: $\phi(x)=0 \iff \exists$ an E=0 eigenstate of A_G supported on root r.
 - Claim I: If $\phi(v)=1$, every E=0 eigenstate $|\alpha\rangle$ of T_v has $\alpha_v=0$.
 - Claim 0: If $\phi(v)=0$, \exists E=0 eigenstate $|\alpha\rangle$ of T_v with $\alpha_v\neq 0$.

Main Theorem:

- Adjacency matrix A_G has eigenvalue E=0 eigenvector with $\Omega(I)$ support on r' when $\varphi(x)$ =0.
- A_G has no eigenvalues $E \in (-1/\sqrt{N}, 1/\sqrt{N})$ with support on r" when $\phi(x) = 0$.
- Remains to show support α_r is large $(\Omega(1))$ when $\varphi(r)=0$, and that there is a large spectral gap $(1/\sqrt{N})$ away from E=0 when $\varphi(r)=1$.
- Proofs by same induction but quantitative.

Algorithm for unbalanced trees

- Main idea: Consider quantization of same classical random walk, except with biased coins $\operatorname{weight}(p,v) = s_v^\beta/s_p^{1/2-\beta}$ (β arbitrary)
- ullet Problem: Walk might not even reach the bottom of a deep formula in time \sqrt{N}

Algorithm for unbalanced trees

- Main idea: Consider quantization of same classical random walk, except with biased coins weight $(p, v) = s_v^{\beta}/s_n^{1/2-\beta}$ (β arbitrary)
- Problem:Walk might not even reach the bottom of a deep formula in time \sqrt{N}

Solution: Rebalance the formula tree

Theorem: ([Bshouty, Cleve, Eberly '91, Bonet & Buss '94]) For any NAND formula φ and $k \ge 2$, can efficiently construct an equivalent NAND formula φ' with

Extension: Formulas on different gate sets

- What is the cost of evaluating a formula that uses other gates besides {AND, OR, NOT, NAND}?
- Example: 3-bit majority $MAJ3(x_1, x_2, x_3) = \begin{cases} 1, & \text{if } x_1 + x_2 + x_3 \ge 2 \\ 0, & \text{otherwise} \end{cases}$
- Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
 - for a depth-d balanced tree it is $\Omega\Big(\big(7/3\big)^d\Big)$ and $O\Big(\big(2.655\dots\big)^d\Big)$ [Jayram, Kumar & Sivakumar '03]
- Quantum complexity lower bound is $\Omega\Big(\sqrt{C_0(f)C_1(f)}\Big) = \Omega(2^d)$
- Quantum upper bound
 - expand into {AND, OR} gates:

$$MAJ3(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2))$$

• size \rightarrow 5^d, \therefore O($\sqrt{5^d}$)=O(2.24^d)-query algorithm

Different gate sets: Gate gadgets

- Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
 - for depth-d balanced tree: $\Omega\left(\left(7/3\right)^d\right)$ and $O\left(\left(2.655\dots\right)^d\right)$ [Jayram, Kumar & Sivakumar '03]
- Quantum lower bound: $\Omega\left(\sqrt{C_0(f)C_1(f)}\right) = \Omega(2^d)$
- Quantum upper bound: $MAJ3(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2)) \Rightarrow O(\sqrt{5}d)$
- Gate gadgets:

recall...

Different gate sets: Gate gadgets

- Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
 - for depth-d balanced tree: $\Omega\Big(\big(7/3\big)^d\Big)$ and $O\Big(\big(2.655\dots\big)^d\Big)$ [Jayram, Kumar & Sivakumar '03]
- Quantum lower bound: $\Omega\left(\sqrt{C_0(f)C_1(f)}\right) = \Omega(2^d)$
- Quantum upper bound: $MAJ3(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2)) \Rightarrow O(\sqrt{5}d)$
- Gate gadgets:

Different gate sets: Gate gadgets

- Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
 - for depth-d balanced tree: $\Omega\Big(\big(7/3\big)^d\Big)$ and $O\Big(\big(2.655\dots\big)^d\Big)$ [Jayram, Kumar & Sivakumar '03]
- Quantum lower bound: $\Omega\left(\sqrt{C_0(f)C_1(f)}\right) = \Omega(2^d)$
- Quantum upper bound: $MAJ3(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2)) \Rightarrow O(\sqrt{5}^d)$

Open problems

Results:

- $N^{\frac{1}{2}+o(1)}$ -time quantum algorithm (N= #leaves) for general {AND, OR, NOT} trees (after efficient preprocessing independent of x)
- $O(\sqrt{N})$ -query qu. alg. for "approximately balanced" {AND, OR, NOT} trees (optimal!)
- $O(N^{\log_3 2})$ -query qu. alg. for balanced MAJ-3 formula trees (optimal!)
- Open: Extension to allow other gates, e.g.,
 - 3-bit not-all-equal = $NOR(AND(x_1,x_2,x_3),AND(x_1^*,x_2^*,x_3^*))$
 - 6-bit (monotone modified) Kushilevitz's function
 - Of interest to understand quantum lower bound separation ADV versus ADV± [Høyer, Lee, Špalek '07]
- Open: Noisy oracle inputs (à la [Høyer, Mosca, de Wolf '03])?
- Open Classical ?: Is [BCE'91] formula rebalancing optimal?
 - Does there exist formula ϕ , k such that every equivalent ϕ ' of depth at most k log N has size(ϕ ') $\geq N^{1+1/\log k}$?