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• NAND gate (NOT-AND):

• NAND “formula” = tree of nested NAND gates

• Problem: Evaluate !(x), given a function for evaluating the xi (oracle access to x).

NAND formulas
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Problem motivations
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• Problem: Evaluate !(x), given a function for evaluating the xi (oracle access to x).

• Motivations:

• Equivalent to S = {AND, OR, NOT} formula trees

• Playing “chess” (two-player games)

• Nodes ↔ game histories

• White wins if ∃ move s.t. ∀ black moves, ∃ move s.t. …

• Decision version of min-max tree evaluation

• inputs are real numbers

• want to decide if minimax is #10 or not



Results
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• Problem: Evaluate !(x), given a function for evaluating the xi (oracle access to x).

• Motivations:

• Equivalent to S = {AND, OR, NOT} formula trees

• Playing “chess” (two-player games)

• Nodes ↔ game histories

• White wins if ∃ move s.t. ∀ black moves, ∃ move s.t. …

• Decision version of min-max tree evaluation

• inputs are real numbers

• want to decide if minimax is #10 or not

• Results: 

• N!+o(1)-time quantum algorithm (N= #leaves) for general trees (after efficient 
preprocessing independent of x)

• O($N)-query quantum algorithm for “approximately balanced” trees 



Problem history (1/2)

• Problem: Evaluate !(x), given a function for evaluating the xi.

• Results: 

• N!+o(1)-time quantum algorithm (N= #leaves) for general trees (after efficient 
preprocessing independent of x)

• O($N)-query quantum algorithm for “approximately balanced” trees (optimal!)

• Classical history

• Deterministic algorithm requires time N

• Randomized (Las Vegas) algorithm in E-time O(N0.754) for balanced 
binary trees [Snir ‘85, Saks & Wigderson ‘86]

• Flip coins to decide which subtree to evaluate next, short-circuit

• Optimal [Santha ‘95]
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• Classical history

• Deterministic algorithm requires time N

• Randomized (Las Vegas) algorithm in E-time "(N0.754) for balanced binary trees [Snir ‘85, 
Saks & Wigderson ‘86, Santha ‘95]

• Quantum history

• Grover search: O($N)-query quantum algorithm to evaluate                   
(with constant error, O($N log log N)-time) [Grover ‘96, ‘02]

• Evaluates regular depth-d tree in $N O(log N)d-1 queries [BCW ‘98]

• Extended to faulty oracles by [Høyer, Mosca, de Wolf ‘03] ⇒ O($N cd) queries

• Adversary lower bound %($N) queries [Barnum, Saks ‘04]

• Farhi, Goldstone, Gutmann 2007: Breakthrough continuous-time 
quantum algorithm for evaluating balanced binary NAND tree in N!+o(1) 
queries & time

Problem history (2/2)



Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be 
evaluated in time N!+o(1).

• Attach an infinite line to the root… 
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Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be 
evaluated in time N!+o(1).

• Attach an infinite line to the root

• Add edges above leaf nodes evaluating to one…
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Farhi, Goldstone, Gutmann ‘07 algorithm

• Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be 
evaluated in time N!+o(1).

• Attach an infinite line to the root

• Add edges above leaf nodes evaluating to one

• Initialize wave packet on left ray…



Continuous-time quantum walk [FGG ‘07]

x11 = 0x11 = 1



Continuous-time quantum walk [FGG ‘07]



Continuous-time quantum walk [FGG ‘07]



Continuous-time quantum walk [FGG ‘07]

ϕ(x) = 0 ϕ(x) = 1



• Introduction

• Motivation, classical & quantum problem history

• Farhi, Goldstone, Gutmann breakthrough algorithm

• Results [Childs, Reichardt, "palek, Zhang ‘07]: 

• O($N)-query quantum algorithm for “approximately balanced” trees

• N!+o(1)-time quantum algorithm (N= #leaves) for general trees (after efficient 
preprocessing independent of x)

• Optimal balanced tree algorithm

• Proof sketch

• Szegedy correspondence

• Zero-energy proof sketch

• Extension to unbalanced trees

• Preprocessing

• Weights

• Extensions & Open problems

Talk outline
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• Start with classical uniform random walk on balanced tree

• Make leaves (inputs) evaluating to 1 probability sinks

• Add two nodes r’ and r’’ at bottom, bias the coin at r’

• Quantize this walk…

• Start at r’’

• Apply phase estimation to precision 1/$N

• If phase is 0 or &, output 0

• Otherwise output 1 

Optimal balanced tree algorithm
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Optimal balanced tree algorithm

• Start with classical uniform random walk on balanced tree

• Make leaves (inputs) evaluating to 1 probability sinks

• Add two nodes r’ and r’’ at bottom, bias the coin at r’

• Quantize this walk…

• Classically, flip a three-sided “coin” to determine next step

• Quantumly, apply (Grover) diffusion operator to the coin

• Start at r’’

• Apply phase estimation to precision 1/$N

• If phase is 0 or &, output 0

• Otherwise output 1 



Quantum walks

• Hilbert space

•  

•                                    switches direction of edges 

•                                                           diffuses outgoing edges from v  

•  

C�E =
�

|v, w� : (v, w) ∈ E
�
⊂ CV×V =

�
|v, w� : v, w ∈ V

�

Step =
�

v,w

|v, w��w, v|

Flip =
�

v

|v��v| ⊗ Reflection(|p(v)�)

|p(v)� =
�

w∼v

√
pv,w|w�

�
�

w

pv,w = 1

�

U = Step · Flip

P =
�

v,w

√
pv,w pw,v|v��w|



Proof: Szegedy correspondence

• Hilbert space

•  

•                                    switches direction of edges 

•                                                           diffuses outgoing edges from v  

• Correspondence between spectrum and eigenvalues of 

C�E =
�

|v, w� : (v, w) ∈ E
�
⊂ CV×V =

�
|v, w� : v, w ∈ V

�

Step =
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�

v,w
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Coined unitary U in 2|E| 
dimensions

Symmetric matrix P in 
|V| dimensions

1
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Proof: Szegedy correspondence

• Correspondence between spectrum and eigenvalues of 

Coined unitary 
U in 2|E| 

dimensions

Classical random walk transition matrix 
P in |V| dimensions

Symmetric matrix in |V| dimensions

1
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“Szegedization” applied

Quantum coined walk U on: Adjacency matrix AG of:

eigenvalues 
& eigenvectors

2|E| dimensions |V| dimensions



• Main Theorem:

• Adjacency matrix AG has eigenvalue E=0 eigenvector with %(1) support on 
r’’ when !(x)=0.

• AG has no eigenvalues E∈(-1/$N,1/$N) with support on r’’ when !(x)=0.
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• Main Theorem:

• Adjacency matrix AG has eigenvalue E=0 eigenvector with %(1) support on 
r’’ when !(x)=0.

• AG has no eigenvalues E∈(-1/$N,1/$N) with support on r’’ when !(x)=0.

• ∴ Phase estimation to precision 1/$N (time $N), starting at r’’, 

evaluates !(x).
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• Theorem: !(x)=0         ∃ an E=0 eigenstate of AG supported on root r.⇔



• Theorem: !(x)=0         ∃ an E=0 eigenstate of AG supported on root r.

• E=0 constraint…

αw + αx + αy + αz = Eαv = 0

αxαw αy

αz

αv

Proof

⇔



. . .

• Theorem: !(x)=0         ∃ an E=0 eigenstate of AG supported on root r.

• E=0:

• Claim 1: If !(v)=1, every E=0 
eigenstate      of Tv has #v=0.
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∀v :
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w∼v

αw = 0

Proof

NAND(x1, . . . , xk) = 1−
�
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xi
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|α�
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• Theorem: !(x)=0         ∃ an E=0 eigenstate of AG supported on root r.
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• Theorem: !(x)=0         ∃ an E=0 eigenstate of AG supported on root r.
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• Theorem: !(x)=0         ∃ an E=0 eigenstate of AG supported on root r.

• Claim 1: If !(v)=1, every E=0 eigenstate      of Tv has #v=0.

• Claim 0: If !(v)=0, ∃ E=0 eigenstate      of Tv with #v'0.

• Main Theorem:

• Adjacency matrix AG has eigenvalue E=0 eigenvector with %(1) support on 

r’’ when !(x)=0.

• AG has no eigenvalues E∈(-1/$N,1/$N) with support on r’’ when !(x)=0.

• Remains to show support #r is large (%(1)) when !(r)=0, and that there is a 
large spectral gap (1/$N) away from E=0 when !(r)=1.  

• Proofs by same induction but quantitative.

⇔
|α�

|α�

$



Algorithm for unbalanced trees

• Main idea: Consider quantization of same classical random walk, except with 
biased coins                                          (% arbitrary)

• Problem: Walk might not even reach the bottom of a deep formula in time $N

weight(p, v) = sβ
v/s1/2−β

p

…



• Main idea: Consider quantization of same classical random walk, except with 
biased coins                                          (% arbitrary)

• Problem: Walk might not even reach the bottom of a deep formula in time $N

• Solution: Rebalance the formula tree 

Theorem: ([Bshouty, Cleve, Eberly ‘91, Bonet & Buss ‘94]) For any NAND 

formula ! and k # 2, can efficiently construct an equivalent NAND formula 
!’ with 

• depth(!’) = O(k log N)

• size(!’) ( N1+1/log k

…

Algorithm for unbalanced trees

weight(p, v) = sβ
v/s1/2−β

p

size-depth tradeoff (set k=2$(log N) to balance size*depth)



Extension: Formulas on different gate sets

• What is the cost of evaluating a formula that uses other gates besides 
{AND, OR, NOT, NAND}?

• Example: 3-bit majority

• Classical complexity to evaluate recursive MAJ3-gate tree is unknown: 

• for a depth-d balanced tree it is                    and                                       
[Jayram, Kumar & Sivakumar ‘03] 

• Quantum complexity lower bound is 

• Quantum upper bound

• expand into {AND, OR} gates:

• size & 5d, ∴ O($5d)=O(2.24d)-query algorithm

MAJ3(x1, x2, x3) =
�

1, if x1 + x2 + x3 ≥ 2
0, otherwise

O

��
2.655 . . .

�d
�

Ω
��

7/3
�d

�

Ω
��

C0(f)C1(f)
�

= Ω(2d)

MAJ3(x1, x2, x3) = (x1 ∧ x2) ∨ (x3 ∧ (x1 ∨ x2))



Different gate sets: Gate gadgets

• Classical complexity to evaluate recursive MAJ3-gate tree is unknown: 

• for depth-d balanced tree:                   and                          [Jayram, Kumar & Sivakumar ‘03] 

• Quantum lower bound:

• Quantum upper bound:                                                                              ⇒ O($5d)
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MAJ3 & 1 !

!
2

"3
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MAJ3

Different gate sets: Gate gadgets

• Classical complexity to evaluate recursive MAJ3-gate tree is unknown: 

• for depth-d balanced tree:                   and                          [Jayram, Kumar & Sivakumar ‘03] 

• Quantum lower bound:

• Quantum upper bound:                                                                              ⇒ O($5d)

• Gate gadgets: 

⇒Optimal recursive MAJ3 evaluation algorithm

& 1 !

!
2

"3

E.g.:

O

��
2.655 . . .

�d
�

Ω
��

7/3
�d

�

Ω
��

C0(f)C1(f)
�

= Ω(2d)

MAJ3(x1, x2, x3) = (x1 ∧ x2) ∨ (x3 ∧ (x1 ∨ x2))



Open problems

• Results: 

• N!+o(1)-time quantum algorithm (N= #leaves) for general {AND, OR, NOT} trees (after 
efficient preprocessing independent of x)

• O($N)-query qu. alg. for “approximately balanced” {AND, OR, NOT} trees (optimal!)

• O(Nlog32)-query qu. alg. for balanced MAJ-3 formula trees (optimal!)

• Open: Extension to allow other gates, e.g., 

• 3-bit not-all-equal = NOR(AND(x1,x2,x3), AND(x1
*,x2

*,x3
*))

• 6-bit (monotone modified) Kushilevitz’s function

• Of interest to understand quantum lower bound separation ADV versus 
ADV± [Høyer, Lee, "palek ‘07]

• Open: Noisy oracle inputs (à la [Høyer, Mosca, de Wolf ‘03])?  

• Open Classical ?: Is [BCE‘91] formula rebalancing optimal?

• Does there exist formula !, k such that every equivalent !’ of depth at 

most k log N has size(!’) # N1+1/log k?


