Any AND-OR formula of size N
can be evaluated in time N72*o(l)

on a quantum computer

Andrew Childs, Ben Reichardt, Robert Spalek, Shengyu Zhang

NAND formulas

L1 L2 Lm

e NAND gate (NOT-AND):

(X1 AT2 A A Tp)
® NAND “formula” = tree of nested NAND gates

I1 X2 Iz X4 Ig X1 Xy X9

B ((azl ANx2) A (xs Axg) ANxs A (ze A (7 Axg) A xg))
(p =

A (21 AN x5 A\ x9)

® Problem: Evaluate (p(x), given a function for evaluating the X; (oracle access to x).

Problem motivations

® Problem: Evaluate (p(x), given a function for evaluating the X; (oracle access to x).

® Motivations:

® Equivalent to S = {AND, OR, NOT} formula trees

® Playing “chess” (two-player games) /1 42 3 24 T9 T1 Ty Tg

® Nodes <> game histories

® White wins if 3 move s.t. V black moves, 3 mo

® Decision version of min-max tree evaluation

® inputs are real numbers

® want to decide if minimax is 210 or not

Results

® Problem: Evaluate (p(x), given a function for evaluating the X; (oracle access to x).

® Motivations:

® Equivalent to S = {AND, OR, NOT} formula trees

® Playing “chess” (two-player games) /1 42 3 24 T9 T1 Ty Tg

® Nodes <> game histories

® White wins if 3 move s.t. V black moves, 3 mo

® Decision version of min-max tree evaluation
® inputs are real numbers

® want to decide if minimax is 210 or not

® Results:

o N”*o(l.time quantum algorithm (N= #leaves) for general trees (after efficient
preprocessing independent of x)

e O(VN)-query quantum algorithm for “approximately balanced” trees

Problem history (1/2)

® Problem: Evaluate @(x), given a function for evaluating the xi.
® Results:

o N”*°(I_time quantum algorithm (N= #leaves) for general trees (after efficient
preprocessing independent of x)

e O(VN)-query quantum algorithm for “approximately balanced” trees (optimal!)

® C(lassical history

0 d

® Deterministic algorithm requires time N log,, Amm((l o1

e Randomized (Las Vegas) algorithm in E-time O(N°7>%) for balanced
binary trees [Snir ‘85, Saks & Wigderson ‘86]

® Flip coins to decide which subtree to evaluate next, short-circuit

e Optimal [Santha ‘95]

® C(lassical history

Problem history (2/2)

® Deterministic algorithm requires time N

® Randomized (Las Vegas) algorithm in E-time ©(N%7>%) for balanced binary trees [Snir ‘85,
Saks & Wigderson ‘86, Santha ‘95]

e Quantum history

L1 L2 LN

e Grover search: O(VN)-query quantum algorithm to evaluate
(with constant error, O(\'N log log N)-time) [Grover ‘96,02]

® Evaluates regular depth-d tree in YN O(log N)&! queries [BCW ‘98]
® Extended to faulty oracles by [Hayer, Mosca, de Wolf ‘03] = O(VN c9) queries

e Adversary lower bound Q(VN) queries [Barnum, Saks ‘04]

® Farhi, Goldstone, Gutmann 2007: Breakthrough continuous-time
quantum algorithm for evaluating balanced binary NAND tree in N”2*o()

queries & time

Farhi, Goldstone, Gutmann ‘07 algorithm

® Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be
evaluated in time N”*o(),

® Attach an infinite line to the root...

o=

Farhi, Goldstone, Gutmann ‘07 algorithm

® Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be
evaluated in time N”*o(),

® Attach an infinite line to the root...

o=

Farhi, Goldstone, Gutmann ‘07 algorithm

Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be
evaluated in time N”*o(),

Attach an infinite line to the root

Add edges above leaf nodes evaluating to one...

o=

Q
o

Farhi, Goldstone, Gutmann ‘07 algorithm

Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be
evaluated in time N”*o(),

Attach an infinite line to the root

Add edges above leaf nodes evaluating to one...

o=

Q
o

Farhi, Goldstone, Gutmann ‘07 algorithm

Theorem ([FGG ‘07, CCJY ‘07]): A balanced binary NAND tree can be
evaluated in time N7*o(}),

Attach an infinite line to the root
Add edges above leaf nodes evaluating to one

Initialize wave packet on left ray...

A A A A o—0—0—0—0—0—0

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

i

Continuous-time quantum walk [FGG ‘07]

él!‘

s-time quantum walk [FGG ‘07]

VT

Continuous-time quantum walk [FGG ‘07]

o I °I |°|o

T

Talk outline

Introduction
® Motivation, classical & quantum problem history
® Farhi, Goldstone, Gutmann breakthrough algorithm

Results [Childs, Reichardt, Spalek, Zhang ‘07]:
e O(VN)-query quantum algorithm for “approximately balanced” trees

o N”*°(I_time quantum algorithm (N= #leaves) for general trees (after efficient
preprocessing independent of x)

Optimal balanced tree algorithm

Proof sketch

® Szegedy correspondence

® Zero-energy proof sketch

Extension to unbalanced trees
® Preprocessing
® Weights

Extensions & Open problems

Optimal balanced tree algorithm

Start with classical uniform random walk on balanced tree
® Make leaves (inputs) evaluating to | probability sinks

® Add two nodes r’ and r”’ at bottom, bias the coin at r’

Y

Apply phase estimation to precision [N r

Quantize this walk...

Start at r”

® |f phase is 0 or T, output O

e Otherwise output | ! OO

Optimal balanced tree algorithm

Start with classical uniform random walk on balanced tree
® Make leaves (inputs) evaluating to | probability sinks
® Add two nodes r’ and r”’ at bottom, bias the coin at r’

Quantize this walk..

® C(lassically, flip a three- S|d “c erm xt S ep
e Quantumly, apply (Grover) fu5|o rator to the coi 0

\/
. /

Apply phase estimation to precision |/AN TD\

® |f phase is 0 or T, output O

e Otherwise output | P/ OO

Quantum walks

e Hilbert space cE = <]v,w> (v, w) € E> cCVV = <|v w) v, w E V>
e U = Step - Flip
® Step = Z lv, w)w, v| switches direction of edges

e Flip= Sj lv)Xv] ® Reflection(|p(v))) diffuses outgoing edges from v

° |p Z vaw|w> (va,w_1>

wnv

v)wl

Proof: Szegedy correspondence

e Hilbert space cE = <]v,w> (v, w) € E> cCVV = <|v,w> LU, W E V>
e U = Step - Flip
e Step = Z lv, w)(w, v| switches direction of edges

e Flip = E lv)Xv] ® Reflection(|p(v))) diffuses outgoing edges from v

()= Y Vioulw) (va,w _ 1>

wnv
® Correspondence between spectrum and eigenvalues of

Coined unitary U in 2|E|
dimensions

% Symmetric matrix P in
|V| dimensions

K/ » P =2 vPowPus

)Wl

Proof: Szegedy correspondence

® Correspondence between spectrum and eigenvalues of

Coined unitary Classical random walk transition matrix

U in 2|E] P Ind>V| dlh{;l@jlor@

dimensions \/ \/ \/ v
symkit matrix i yd.mmns

f
o
L/ N,

Quantum coined walk U on:

\

o=

Y q

“Szegedization” applied

elgenvalues
& eigenvectors

NO

2|E| dimensions |[V| dimensions

Adjacency matrix Ag of:

o=

1

¢ Main Theorem:

® Adjacency matrix Ag has eigenvalue E=0 eigenvector with Q(1) support on
r” when (x)=0.

® Ag has no eigenvalues E€(-1/AN, 1/VN) with support on r” when @(x)=0.

1

¢ Main Theorem:

o=

® Adjacency matrix Ag has eigenvalue E=0 eigenvector with Q(1) support on

r” when (x)=0.

® Ag has no eigenvalues E€(-1/AN, 1/VN) with support on r” when @(x)=0.

e .. Phase estimation to precision |/YN (time YN), starting at r”,

evaluates p(x).

® Theorem: (x)=0 <=> 3 an E=0 eigenstate of Ag supported on root r.

® Theorem: ©(x)=0 <=> 3 an E=0 eigenstate of Ag supported on root .

Proof

® E=0 constraint...

Qy Y
Oy + 0 +ay +a, = FEa, =0

Theorem: (x)=0 <=> 3 an E=0 eigenstate of Ag supported on root r.

Proof

WU o=

Claim I:If (psv)= |, every E=0
eigenstate |/ of Ty has &,=0.

NAND(21,...,zx) =1 —] J

Theorem: (x)=0 <=> 3 an E=0 eigenstate of Ag supported on root r.

Proof

WU o=

Claim I:If (psv)= |, every E=0
eigenstate |/ of Ty has &,=0.

NAND(21,...,zx) =1 —] J

Theorem: (x)=0 <=> 3 an E=0 eigenstate of Ag supported on root r.

Proof

WU o=

Claim I:If (psv)= |, every E=0
eigenstate |/ of Ty has &,=0.

NAND(21,...,zx) =1 —] J

Theorem: (x)=0 <=> 3 an E=0 eigenstate of Ag supported on root r.

Proof

WU o=

Claim I:If (psv)= |, every E=0
eigenstate |/ of Ty has &,=0.

NAND(21,...,zx) =1 —] J

Theorem: (x)=0 <=> 3 an E=0 eigenstate of Ag supported on root r.

Proof

WU o=

Claim I:If (psv)= |, every E=0
eigenstate |/ of Ty has 0v=0

0+0+a, =0

NAND(21,...,zx) =1 —] J

Theorem: (x)=0 <=> 3 an E=0 eigenstate of A supported on root r.

Proof

Claim I:If (pSv)= |, every E=0
eigenstate o of Ty has ov=0/

Claim 0: If ¢p(v)=0, d E=0 eigenstate
9 of T, with 0#0.

Theorem: (x)=0 <=> 3 an E=0 eigenstate of A supported on root r.

Proof

WU o=

Claim I:If (pSv)= |, every E=0
eigenstate o of Ty has ov=0/

Claim 0: If ¢p(v)=0, d E=0 eigenstate
90 of T, with 0 #0. v

NAND (w1, ..., z5) =1 —] J 2

Theorem: (x)=0 <=> 3 an E=0 eigenstate of A supported on root r.

Proof

WU o=

Claim I:If (pSv)= |, every E=0
eigenstate o of Ty has ov=0/

Claim 0: If ¢p(v)=0, d E=0 eigenstate
90 of T, with 0 #0. v

NAND (w1, ..., z5) =1 —] J 2

Theorem: (x)=0 <=> 3 an E=0 eigenstate of A supported on root r.

Proof

WU o=

Claim I:If (pSv)= |, every E=0
eigenstate o of Ty has ov=0/

Claim 0: If ¢p(v)=0, d E=0 eigenstate
90 of T, with 0 #0. v

NAND (w1, ..., z5) =1 —] J 2

Theorem: (x)=0 <=> 3 an E=0 eigenstate of A supported on root r.

Proof

Claim I:If (pSv)= |, every E=0
eigenstate o of Ty has ov=0/

Claim 0: If ¢p(v)=0, d E=0 eigenstate
90 of T, with 0 #0. v

NAND (w1, ..., z5) =1 —] J 2

Theorem: (x)=0 <=> 3 an E=0 eigenstate of A supported on root r.

Proof

E=0. VU: Zozw:()

wnv

Claim I:If (pSv)= |, every E=0
eigenstate o of Ty has ov=0/

Claim 0: If ¢p(v)=0, d E=0 eigenstate
9 of T, with 0#0.

Theorem: (x)=0 <=> 3 an E=0 eigenstate of A supported on root "/

Proof

E=0. VU: Zozw:()

wnv

Claim I:If (pSv)= |, every E=0
eigenstate o of Ty has ov=0/

Claim 0: If ¢p(v)=0, d E=0 eigenstate
9 of T, with o#0y

® Theorem: (x)=0 <=> 3 an E=0 eigenstate of Ag supported on root "/

® Claim I:If ¢p(v)=I, every E=0 eigenstate) of Ty has &,=0.
e Claim 0:If ¢p(v)=0, d E=0 eigenstate o) of T, with o, #0.

e Main Theorem:

® Adjacency matrix Ag has eigenvalue E=0 eigenvector with Q(1) support on
r” when @(x)=0.

® Ag has no eigenvalues EE(-1/AN, 1/VN) with support on r” when ¢(x)=0.

® Remains to show support & is large (Q(1)) when ¢(r)=0, and that there is a
large spectral gap (1/VN) away from E=0 when @(r)=1.

® Proofs by same induction but quantitative.

Algorithm for unbalanced trees

® Main idea: Consider quantization of same classical random walk, except with
biased coins weight(p, v) = sg/s;/z_ﬁ (B arbitrary)

e Problem:Walk might not even reach the bottom of a deep formula in time VN

Q @)

%

/

>

Algorithm for unbalanced trees

® Main idea: Consider quantization of same classical random walk, except with
biased coins weight(p, v) = sg/s;/z_ﬁ (B arbitrary)

e Problem:Walk might not even reach the bottom of a deep formula in time VN
N
/

® Solution: Rebalance the formula tree J

Theorem: ([Bshouty, Cleve, Eberly ‘91, Bonet & Buss ‘94]) For any NAND
formula ¢p and k 2 2, can efficiently construct an equivalent NAND formula
@’ with

® depth(¢®’) = O(k log N
pth(¢’) (k log > size-depth tradeoff (set k=2V(e2N) to balance size*depth)
® size((p’) < N!*l/logk

Extension: Formulas on different gate sets

What is the cost of evaluating a formula that uses other gates besides
{AND, OR, NOT, NAND}?

' >
Example: 3-bit majority MAJ3(z1, 22, 23) = { 1, ifxy+x0+23>2

0, otherwise

Classical complexity to evaluate recursive MAJ3-gate tree is unknown:
e for a depth-d balanced tree it is Q((?/S)d) and O ((2.655 . .)d)

[Jayram, Kumar & Sivakumar ‘03]

Quantum complexity lower bound is Q(\/Co(f)C’l(f)) = Q2%
Quantum upper bound

e expand into {AND, OR} gates:
MAJ3(x1,x2,23) = (x1 Axa) V (z3 A (21 V 2))

® size — 59,.-. O(V59)=0(2.249)-query algorithm

Different gate sets: Gate gadgets

® (Classical complexity to evaluate recursive MAJ3-gate tree is unknown:

® for depth-d balanced tree: Q((?/B)d) and O<(2.655 . .)d> [Jayram, Kumar & Sivakumar ‘03]
® Quantum lower bound: Q(\/Co(f)Cl(f)) = (29
® Quantum upper bound: MAJ3(xz1, z2,23) = (21 A 22) V (23 A (21 V 22)) = ON5Y)

® (ate gadgets:

recall...

NAND —_

Different gate sets: Gate gadgets

® (Classical complexity to evaluate recursive MAJ3-gate tree is unknown:

® for depth-d balanced tree: Q((?/B)d) and O<(2.655 . .)d> [Jayram, Kumar & Sivakumar ‘03]
® Quantum lower bound: Q(\/Co(f)Cl(f)) = (29
® Quantum upper bound: MAJ3(xz1, z2,23) = (21 A 22) V (23 A (21 V 22)) = ON5Y)

® (ate gadgets:

recall. .. new substitution rule:

NAND —_ MAJ3

—_———-

Different gate sets: Gate gadgets

® (Classical complexity to evaluate recursive MAJ3-gate tree is unknown:

® for depth-d balanced tree: Q((?/B)d) and O<(2.655 . .)d> [Jayram, Kumar & Sivakumar ‘03]
® Quantum lower bound: Q(\/Co(f)Cl(f)) = (29
® Quantum upper bound: MAJ3(x1, x2,23) = (21 Ax2) V (x3 A (1 V 22)) = O(\/Sd)

WU IW W W
W I
7

MAJ3

s

=Optimal recursive MAJ3 evaluation algorithm

Open problems

Results:

o N”*°(l_time quantum algorithm (N= #leaves) for general {AND, OR, NOT} trees (after
efficient preprocessing independent of x)

e O(VN)-query qu.alg. for “approximately balanced” {AND, OR, NOT} trees (optimal!)
® O(N'°&?)-query qu.alg. for balanced MAJ-3 formula trees (optimal!)

Open: Extension to allow other gates, e.g.,
e 3-bit not-all-equal = NOR(AND(x|,x2,x3), AND(x;",x2",x3"))
® 6-bit (monotone modified) Kushilevitz’s function

e Ofinterest to understand quantum lower bound separation ADV versus
ADV= [Hoyer, Lee, Spalek ‘07]

Open: Noisy oracle inputs (a la [Hayer, Mosca, de Wolf ‘03])?

Open Classical ?:Is [BCE91] formula rebalancing optimal?

® Does there exist formula ¢, k such that every equivalent ¢’ of depth at
most k log N has size(¢p’) = N!*!/legk

