
Ben Reichardt
USC

Alexandrs Belovs
University of Latvia

Quantum algorithm for
deciding st-connectivity

arXiv:1203.2603 [quant-ph]

Workshop on Recent Progress in Quantum Algorithms, April 11, 2012

Claw-detection4

Detect a {k1, k2, k3} subdivided claw

st-connectivity Path-detection1

Is there a path from s to t? Is there any path of length k?

2

Triangle subgraph/not-a-minor
promise problem

3

Does G contain a
triangle, or is it acyclic?

Input: G’s adjacency matrix, an -bit string

|x ∈
{0,

1}
n |

Goal:

Resource:

Algorithm:

Q
u

e
ry

 c
o

m
p

le
x

it
y

· · · f(x)
query
x

query
x

Evaluate function f on input x

w/ prob. ≥2/3

st-connectivity (USTCON)

Quantum query algorithmClassical algorithms

• Randomized log-space [AKLLR’79]:
Hitting time Hst + Hts = 2 m Rst ≤ n3

effective
resistance

edges

• Derandomized by [Reingold ’08]

• Graph traversal (e.g., DFS), in Θ(n) space

With queries to n!n adjacency matrix…

[Dürr, Heiligman, Høyer, Mhalla ’04]

• [DHHM ’04]: output list of connected
components
- O(n3/2) queries—optimal
- O(n) bits of quantum RAM
- Algorithm

- List={1},{2},…,{n}
- Repeat: Grover search for an

edge between two components
- Output List

1. List = {1}, {2}, …, {n}
2. Repeat:

- Grover search for edge
between two components

- Merge those components
3. Output List

= O(n3/2) queries to n!n adjacency matrix
— optimal

• Outputs all connected components
• O(n) bits of quantum RAM

New st-connectivity quantum query algorithm

O(√(M Rst)) = O(n√d) queries,

if s and t are promised either to be within distance d,
or be disconnected

possible edges

• Is this promise problem interesting? Yes, three reasons.
Log space, applications, learning graphs, connection to
classical and quantum walks.

The st-connectivity promise problem

Applications
incl. learning graphs

Connections
to random &

quantum walks
Efficiently

implementable

Log space

Theorem: Q(detecting length-k path) = Θ(n)
 for any fixed k.

Application: Path detection
Does G contain a path of length k?

[Childs & Kothari ’11]

� � � �

� � �

� � �

� �

� �
� �

� �
� � � �

� � � �
� � � �

5 10 15 20 25 30

1.0

1.1

1.2

1.3

1.4

1.5

Path length k

Ex
po

ne
nt

 o
f n

Grover search

kk

Does G contain ?

• Randomly color vertices by {0,…,k}.
Discard badly colored edges.
(Hopefully a path is colored correctly.)

Algorithm

Application: Path detection

Does G contain ?

• Randomly color vertices by {0,…,k}.
Discard badly colored edges.
(Hopefully a path is colored correctly.)

Algorithm

Application: Path detection

Does G contain ?

• Randomly color vertices by {0,…,k}.
Discard badly colored edges.
(Hopefully a path is colored correctly.)

Algorithm

Application: Path detection

Does G contain ?

• Randomly color vertices by {0,…,k}.
Discard badly colored edges.
(Hopefully a path is colored correctly.)

Algorithm

Application: Path detection

Does G contain ?

• Randomly color vertices by {0,…,k}.
Discard badly colored edges.
(Hopefully a path is colored correctly.)

• Attach s to color-0 vertices,
and t to color-k vertices.

• Run s-t connectivity.

Algorithm

Application: Path detection

s t

Does G contain a path of length k?
Application: Path detection

Application: Subgraph detection

Star with two subdivided legs

• Learning graphs (with input-independent weights) are a
reduction to st-connectivity on graphs of a restricted
form (not complete)

• Example: Grover search

• Complexity = √(max cut size) √(maxx Rst(x))

Example application: Learning graphs

s t
…

st-connectivity

•
• input vector

labeled by (AG)[u,v] = 1, i.e., the input
vector can be used if the edge is present

• Span program P =
• Target vector
• Input vectors, each labeled by

 (index j, variable value b)
• P(x) := 1 iff can be reached using input

vectors labeled by
 (1, x1), …, (n, xn)

Span programs

“Witnesses” to P(x)=1 ⇔ balanced s-t flows

✓

✓

✓

Witness size(P) = maxx wsize(P,x)

Case P(x)=1

correctly detects triangles, but also:

✓ 12+12 = 2

✓ 12+12+12 = 3

✓

12+⅓2+⅓2+⅔2

= 5/3

wsize(PSTCONN, G) = Rst(G)
≤ d(s,t) ≤ n

Witness size(P) = maxx wsize(P,x)

Case P(x)=0

Reachable
space

1

0
1

1

0

wsize(PSTCONN, G) = cut size(G) ≤ n2/4

Witness size(P) = maxx wsize(P,x)

Case P(x)=1

Case P(x)=0

st-connectivity

wsize(PSTCONN, G) = Rst(G) ≤ d(s,t) ≤ n
s connected to t:

wsize(PSTCONN, G) ≤ n2

s not connected to t:

Witness size(P) = √max wsize(P,x) max wsize(P,x)
x: P(x)=1 x: P(x)=0

Case P(x)=1

Case P(x)=0

st-connectivity

wsize(PSTCONN, G) = Rst(G) ≤ d(s,t) ≤ n
s connected to t:

wsize(PSTCONN, G) ≤ n2

s not connected to t:

Theorem:

space: # qubits = log(# input vectors)

Application?: Triangle detection
Does G contain ?

• Randomly color vertices. Split yellow
vertices in two. Keep only edges

• Attach s to vertices ,
 t to vertices

• Run s-t connectivity.

Algorithm?

Application?: Triangle detection
Does G contain ?

• Randomly color vertices. Split yellow
vertices in two. Keep only edges

• Attach s to vertices ,
 t to vertices

• Run s-t connectivity.

Algorithm?

It doesn’t work! It correctly detects triangles, but also:
Odd cycles (triangle is a minor) Paths (first & last vertices needn’t match)

We’ll fix this…

detection

• Randomly color vertices. Split yellow vertices.
Keep edges

• Attach s to vertices , t to vertices

• Run s-t connectivity with breadcrumbs

Algorithm

detection

• Randomly color vertices. Split yellow vertices.
Keep edges

• Attach s to vertices , t to vertices

• Run s-t connectivity with breadcrumbs

Algorithm

Witness size G contains : wsize = 12+12+12 = O(1)

G does not contain minor ⇒ G acyclic ⇒ G a forest:

Set , ⇒ ✓

Across edges , set

Set

to fix all coefficients up to additive constant

01

12
3

2

Witness size (acyclic case)

01

12
3

2
input
vectors No good

Witness size (acyclic case)

01

12
3

2
input vectors
incident to u

Theorem: There exists an O(n)-query quantum algorithm that
distinguishes between:

• graphs containing a triangle subgraph, and

• graphs that do not contain a triangle as a minor.

Discarding edges

⇒ Each edge removed with probability ⅓

random
coloring

⇒

Space complexity

• Algorithms need to look up the color of a vertex

• For detecting a length-k path Pk+1, (k+1)-wise independence of the
coloring suffices
 ⇒ log(n) space for the hash function

random
coloring

E[(distance from 0 before two
vertices are given same color)2]

0
…

1 2 3 … 7 8

• But analysis for triangle-detection algorithm requires full independence

⇒ Θ(n) space of quantum RAM

Subdivided stars

Theorem: For any fixed k1, …, kd, here exists an O(n)-query
quantum algorithm that distinguishes between:

• graphs containing a {k1, …, kd} subdivided star, and

• graphs not containing said subdivided star as a minor.

Corollary: O(n)-query quantum algorithm
for detecting {k1, k2, k3} subdivided star (“claw”).

Subdivided star subgraph/not-a-minor problem

• Randomly color vertices of G by vertices of subdivided star.
Keep only correctly colored edges.

• Evaluate the span program for s-t connectivity with
breadcrumbs…

Algorithm

Example: G=T

span program edges:

pa
ire

d w
ith

br
ea

dc
ru

mbs

paired

paired

Idea: s-t path traverses the subdivided star, out and back each leg.
Paired edges force path to use same return edge.

• State the theorem(s)
• Give the span program—Explain how the path goes
• Give some examples?—Skip the analysis
• Open problems:

• Trees
• Subgraph/not-a-minor promise problem
• Characterize for what graphs does the breadcrumb trick work

Open problems:
• Does the same algorithm work

for any trees/forests?
• Characterize for what graphs

breadcrumb trick works.
• Is the query complexity of the

subgraph/not-a-minor problem
always O(n)?

• Just describe the st-connectivity algorithm
• Briefly explain how to use a Szegedy-style quantum walk
• Show how we add dummy edges so that the span

program can be easily factored

Time-efficient
implementations

Span-program evaluation algorithm
Run phase estimation on

ta
rg

et

ve
ct

or

in
pu

t
ve

ct
or

s

st-connectivity

1
-1 1

-1

1

-1 …
={balanced flows in Kn}

1. Factor the solution
- into constraints on original vertices
& on edge vertices—now commuting

Certificate cx for input x = set of positions whose values fix f

Implementing the reflection about the
set of balanced flows in Kn

Flow = s.t. ∀v,

2. Use phase estimation to isolate
the +1 eigenspace, reflect, uncompute

Open problems

• Is O(n√d) promise st-connectivity query complexity optimal?

• Efficient implementations of learning graphs

• Combine learning graphs with breadcrumb trick

• Connection to quantum walks

• Algorithms based on the superposition over the electrical flow
—are exponential speedups possible?

