Quantum algorithm for
deciding st-connectivity

Ben Reichardt
INe

Alexandrs Belovs
University of Latvia

arXiv:1203.2603 [quant-ph]

Workshop on Recent Progress in Quantum Algorithms, April 11,2012

(1) st-connectivity (2)Path-detection

Is there a path from s to t! Is there any path of length k?

Triangle subgraph/not-a-minor
3) : (4)Claw-detection
promise problem

>

Does G contain a
triangle, or is it acyclic? Detect a {ki, k2, k3} subdivided claw

[Input: G’s adjacency matrix, an (2)-bit string

Query complexity

Goal: Evaluate function f on input x

Resource:) o;lj) —

Algorithm:

— f(z)

w/ prob. >=2/3

st-connectivity (USTCON)

Classical algorithms Quantum query algorithm
[Durr, Heiligman, Hayer, Mhalla '04]

* Graph traversal (e.g., DFS), in ©O(n) space

-
» Randomized log-space [AKLLR’79]: |. List = {I},{2}, ..., {n}
Hitting time Hs + Hs =2 m Ry < n? 2. Repeat:
” e/clges\effe ctive - Grover search for edge
resistance between two components

- Merge those components

3. Output List

_

* Derandomized by [Reingold '08]

* Outputs all connected components
* O(n) bits of quantum RAM

n? possible edges n? n?
n edges n—1 1

= O(n3?) queries to nxn adjacency matrix
— optimal

New st-connectivity quantum query algorithm

O(V(M Rs)) = O(nv/d) queries,

possible edges
if s and t are promised either to be within distance d,

or be disconnected

Log space

Efficiently
implementable

Connections
to random &
quantum walks

Applications

incl. learning graphs

Exponent of n

1.5

14

1.3

1.2

p—
p—
T T T T T

Application: Path detection
Does G contain a path of length k?

[Childs & Kothari | 1]

Theorem: Q(detecting length-k path) = O(n)

for any fixed k.

kk

5 10 15 20 25 30

Path length k

Application: Path detection
Does G contain @—O—@0—@?

Algorithm

* Randomly color vertices by {0,...,k}.
Discard badly colored edges. O
(Hopefully a path is colored correctly.)

Application: Path detection
Does G contain @—(O—@0—@??

Algorithm

* Randomly color vertices by {0,...,k}.
Discard badly colored edges. O
(Hopefully a path is colored correctly.)

Application: Path detection
Does G contain @—(O—@0—@??

Algorithm O

* Randomly color vertices by {0,...,k}.
Discard badly colored edges. O
(Hopefully a path is colored correctly.)

Application: Path detection
Does G contain @—(O—@0—@??

Algorithm

* Randomly color vertices by {0,...,k}.
Discard badly colored edges. O
(Hopefully a path is colored correctly.)

Application: Path detection
Does G contain @—(O—@0—@??

Algorithm

* Randomly color vertices by {0,...,k}.
Discard badly colored edges.
(Hopefully a path is colored correctly.)

o Attach s to color-0 vertices,
and t to color-k vertices.

* Run s-t connectivity.

O(nv/k+3) = O(n)

Application: Path detection
Does G contain a path of length k?

Application: Subgraph detection
Star with two subdivided legs

v

Example application: Learning graphs

* Learning graphs (with input-independent weights) are a
reduction to st-connectivity on graphs of a restricted
form (not complete)

* Example: Grover search

» Complexity = +/(max cut size) v/(maxx Rst(x))

Span programs st-connectivity

* Span program P =

* Target vector |7) e TV =t)—1s) e RV

* Input vectors, each labeled by « input vector |u) — |v)
(index j, variable value b) labeled by (Ac)[u,v] = |, i.e., the input
* P(x) = L iff|T) can be reached using input vector can be used if the edge is present
vectors labeled by
(I, x1), ..., (N, %n)
“Witnesses” to P(x)=1 < balanced s-t flows
ja) = s)
la) — |s) 5(I0) — la))
+ [t — |a) 5([t) —1b))
15 « o +2(1) — Ja))
1) —ls)

) —|s)
>—’|a>> I\
— b

|s) v C/ J

Wi itness size(P) = maxx wsize(P,x)

Case P(X)=1

= Y, wl)

available
input vectors |v)

wsize(P,) = min Z w,|?

(

wsize(Pstconn, G) = Rat(G)
< d(s,t) = n

~N

J

Wi itness size(P) = maxx wsize(P,x)

Case P(x)=0

|T> gé Span(inpu%cvgielgclz)lfs |v>)

= 3 |w') L available vectors
(w'|r) =1

| '))
Reachable
—~ space

2

wsize(P,z) = min » _[(w'|v)|

[Wsize(PSTCONN, G) = cut size(G) < n2/4J

Witness size(P) = maxx wsize(P,x)

Case P(xX)=1

=) wy)

available
input vectors |v)

wsize(P,) = min Z [w,|?

Case P(x)=0

= 3 |w') L available vectors

(w'[r) =1

wsize(P,) = min Z [(w'[v)[*

st-connectivity

s connected to t;
wsize(Pstconn, G) = Rst(G) < d(s,t) < n

s hot connected to t:

wsize(Pstconn, G) < n?

Witness size(P) = vmax wsize(P,x) max wsize(P,x)

x: P(x)=1 x: P(x)=0
Case P(xX)=1 st-connectivity
s connected to t:
= >, wl) wsize(Pstconn, G) = Re(G) < d(s,t) < n
available

input vectors |v)
s not connected to t;

ize(P G) < n?
wsize(P, x) = minz 2, | wsize(Pstconn, G) = n
v

Case P(x)=0 Theorem:
= 3 |w') L available vectors @(min WSiZG(P))
, P eval to f
(w'|T) =1

space: # qubits = log(# input vectors)

wsize(P, z) = min Z [(w'|v)|

Application?: Triangle detection
Does G contain Z

t to vertices)

Algorithm!?
* Randomly color vertices. Split yellow
vertices in two. Keep only edges
o—o 0—0 00—
e Attach s to vertices @,

* Run s-t connectivity.

Application?: Triangle detection
Does G contam 4

Algorithm!?
* Randomly color vertices. Split yellow
vertices in two. Keep only edges
o—o 0—0 00—
e Attach s to vertices @,

t to vertices)
* Run s-t connectivity. ©

It doesn’t work! It correctly detects triangles, but also:

Odd cycles (triangle is a minor) Paths (first & last vertices needn’t match)
e "
©, —®

We'll fix this...

A detection

Algorithm
* Randomly color vertices. Split yellow vertices.
Keep edges O—@ @0—@ @—0O u, 1) — [s)+|crumb u)
e Attach s to vertices D), t to vertices) t) — |u, 2)—|crumb u)

* Run s-t connectivity with breadcrumbs

@‘* —0

) + |crumb w) — |crumb v) # |7)

A detection

Algorithm
* Randomly color vertices. Split yellow vertices.
Keep edges O—@ @0—@ @—0O u, 1) — [s)+|crumb u)
e Attach s to vertices D), t to vertices) t) — |u, 2)—|crumb u)

* Run s-t connectivity with breadcrumbs

Witness size G containsA: wsize = 12+12+12 = O(l)
G does not contain A minor = G acyclic = G a forest:

Set (s|w’) =1, (t{w') =0 = (rjw') =1 v 1

Oo—=0
Across edges @@, set (u|w') = (v|w')
o—0

Set (crumb u|w’) = —(u, 2|w")
(u, 1lw")y = 1+ (u, 2|w")
to fix all coefficients up to additive constant 3

Witness size (acyclic case)

wsize = min Z [(w'|v) \2

witnesses |w') .
input vectors |v)

<n?. max\<v|w'>|2 < n?
(%

input
vectors No gOOd

Witness size (acyclic case)

wsize = min Z [(w'|v) \2

witnesses |w’)
input vectors |v)

< D ul!)n

vertices u # input vectors
incident to u

Discarding edges O—0O @—@ —@

= Each edge removed with probability /3

= Elwsize] <) (if@/s)j) -n = 0(n?)

coloring vertices u

Theorem: There exists an O(n)-query quantum algorithm that
distinguishes between:

* graphs containing a triangle subgraph, and

* graphs that do not contain a triangle as a minor.

Space complexity

* Algorithms need to look up the color of a vertex

* For detecting a length-k path P+, (k+1)-wise independence of the
coloring suffices

= log(n) space for the hash function

 But analysis for triangle-detection algorithm requires full independence

= ©O(n) space of quantum RAM

B < 3 (L%0/3) n= 0w

coloring vertices u

\ . 7
~"

E[(distance from O before two
vertices are given same color)?]

—C—"10—C(C—"0@—C—"—@—0—0—
o I 2 3 - /7 8

Subdivided stars

Theorem: For any fixed ki, ..., kq, here exists an O(n)-query
quantum algorithm that distinguishes between:

* graphs containing a {ki, ..., kq} subdivided star, and

* graphs not containing said subdivided star as a minor.

Corollary: O(n)-query quantum algorithm
for detecting {ki, kz, k3} subdivided star (“claw”).

=

Subdivided star subgraph/not-a-minor problem

Algorithm

* Randomly color vertices of G by vertices of subdivided star.
Keep only correctly colored edges.

 Evaluate the span program for s-t connectivity with
breadcrumbs...

Example: G=T

(

Open problems:

* Does the same algorithm work
for any trees/forests?

* Characterize for what graphs
breadcrumb trick works.

* Is the query complexity of the
subgraph/not-a-minor problem
always O(n)?

|dea: s-t path traverses the subdivided star, out and back each leg.
Paired edges force path to use same return edge.

Time-efficient

-

implementations
N\)
Span-program evaluation algorithm st-connectivity
Run phase estimation on -
O, Ref (Ker @g *glé)) Ker <l _%_1) ={balanced flows in K}
/U J

Implementing the reflection about the
set of balanced flows in K,

|. Factor the solution

- into constraints on original vertices
& on edge vertices—now commuting

2. Use phase estimation to isolate
the +1 eigenspace, reflect, uncompute

Open problems

Is O(n+/d) promise st-connectivity query complexity optimal?
Efficient implementations of learning graphs

Combine learning graphs with breadcrumb trick

Connection to quantum walks

Algorithms based on the superposition over the electrical flow
—are exponential speedups possible?

