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Claw-detection4

Detect a {k1, k2, k3} subdivided claw

st-connectivity Path-detection1

Is there a path from s to t? Is there any path of length k?

2

Triangle subgraph/not-a-minor 
promise problem

3

Does G contain a 
triangle, or is it acyclic?

Input: G’s adjacency matrix, an     -bit string
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st-connectivity (USTCON)

Quantum query algorithmClassical algorithms

• Randomized log-space [AKLLR’79]: 
Hitting time Hst + Hts = 2 m Rst ≤ n3 

effective 
resistance

# edges

• Derandomized by [Reingold ’08]

• Graph traversal (e.g., DFS), in Θ(n) space

With queries to n!n adjacency matrix…

[Dürr, Heiligman, Høyer, Mhalla ’04]

• [DHHM ’04]: output list of connected 
components
- O(n3/2) queries—optimal
- O(n) bits of quantum RAM
- Algorithm 

- List={1},{2},…,{n}
- Repeat: Grover search for an 

edge between two components
- Output List

1. List = {1}, {2}, …, {n}
2. Repeat: 

- Grover search for edge 
between two components

- Merge those components
3. Output List

= O(n3/2) queries to n!n adjacency matrix
— optimal

• Outputs all connected components
• O(n) bits of quantum RAM



New st-connectivity quantum query algorithm

O(√(M Rst)) = O(n√d) queries, 

if s and t are promised either to be within distance d, 
or be disconnected

# possible edges

• Is this promise problem interesting?  Yes, three reasons.  
Log space, applications, learning graphs, connection to 
classical and quantum walks.  

The st-connectivity promise problem

Applications
incl. learning graphs

Connections 
to random & 

quantum walks
Efficiently 

implementable

Log space



Theorem: Q(detecting length-k path) = Θ(n) 
    for any fixed k.

Application: Path detection
Does G contain a path of length k?

[Childs & Kothari ’11]
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Does G contain                                 ?

• Randomly color vertices by {0,…,k}.
Discard badly colored edges.  
(Hopefully a path is colored correctly.)

Algorithm

Application: Path detection
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Does G contain                                 ?

• Randomly color vertices by {0,…,k}.
Discard badly colored edges.  
(Hopefully a path is colored correctly.)

• Attach s to color-0 vertices, 
and t to color-k vertices.

• Run s-t connectivity.

Algorithm

Application: Path detection



s t

Does G contain a path of length k?
Application: Path detection



Application: Subgraph detection

Star with two subdivided legs



• Learning graphs (with input-independent weights) are a 
reduction to st-connectivity on graphs of a restricted 
form (not complete)

• Example: Grover search

• Complexity = √(max cut size) √(maxx Rst(x))

Example application: Learning graphs

s t
…



st-connectivity

•  
• input vector

labeled by (AG)[u,v] = 1, i.e., the input 
vector can be used if the edge is present

• Span program P = 
• Target vector
• Input vectors, each labeled by 

   (index j, variable value b)
• P(x) := 1 iff      can be reached using input 

vectors labeled by 
       (1, x1), …, (n, xn)

Span programs

“Witnesses” to P(x)=1 ⇔ balanced s-t flows

✓

✓

✓



Witness size(P) = maxx wsize(P,x)

Case P(x)=1

correctly detects triangles, but also: 

✓ 12+12 = 2

✓ 12+12+12 = 3

✓

12+⅓2+⅓2+⅔2 

= 5/3

wsize(PSTCONN, G) = Rst(G)
≤ d(s,t) ≤ n



Witness size(P) = maxx wsize(P,x)

Case P(x)=0

Reachable 
space

1

0
1

1

0

wsize(PSTCONN, G) = cut size(G) ≤ n2/4



Witness size(P) = maxx wsize(P,x)

Case P(x)=1

Case P(x)=0

st-connectivity

wsize(PSTCONN, G) = Rst(G) ≤ d(s,t) ≤ n
s connected to t: 

wsize(PSTCONN, G) ≤ n2

s not connected to t: 



Witness size(P) = √max wsize(P,x)  max wsize(P,x)
x: P(x)=1 x: P(x)=0

Case P(x)=1

Case P(x)=0

st-connectivity

wsize(PSTCONN, G) = Rst(G) ≤ d(s,t) ≤ n
s connected to t: 

wsize(PSTCONN, G) ≤ n2

s not connected to t: 

Theorem: 

space:  # qubits = log(# input vectors) 



Application?: Triangle detection
Does G contain           ?

• Randomly color vertices.  Split yellow 
vertices in two.  Keep only edges  

• Attach s to vertices     , 
           t to vertices

• Run s-t connectivity.

Algorithm?



Application?: Triangle detection
Does G contain           ?

• Randomly color vertices.  Split yellow 
vertices in two.  Keep only edges  

• Attach s to vertices     , 
           t to vertices

• Run s-t connectivity.

Algorithm?

It doesn’t work!  It correctly detects triangles, but also: 
Odd cycles (triangle is a minor) Paths (first & last vertices needn’t match)

We’ll fix this…



detection

• Randomly color vertices. Split yellow vertices.  
Keep edges 

• Attach s to vertices     , t to vertices

• Run s-t connectivity with breadcrumbs

Algorithm



detection

• Randomly color vertices. Split yellow vertices.  
Keep edges 

• Attach s to vertices     , t to vertices

• Run s-t connectivity with breadcrumbs

Algorithm

Witness size G contains          : wsize = 12+12+12 = O(1)

G does not contain            minor ⇒ G acyclic ⇒ G a forest:

Set                ,                  ⇒                  ✓

Across edges             , set 

Set

to fix all coefficients up to additive constant
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Witness size (acyclic case)
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Witness size (acyclic case)

01

12
3

2
# input vectors 
incident to u

Theorem:  There exists an O(n)-query quantum algorithm that 
distinguishes between: 

• graphs containing a triangle subgraph, and 

• graphs that do not contain a triangle as a minor.

Discarding edges 

⇒ Each edge removed with probability ⅓ 

random 
coloring

⇒



Space complexity

• Algorithms need to look up the color of a vertex

• For detecting a length-k path Pk+1, (k+1)-wise independence of the 
coloring suffices 
 ⇒ log(n) space for the hash function

random 
coloring

E[(distance from 0 before two 
vertices are given same color)2]

0
…

1 2 3 … 7 8

• But analysis for triangle-detection algorithm requires full independence 

⇒ Θ(n) space of quantum RAM



Subdivided stars

Theorem:  For any fixed k1, …, kd, here exists an O(n)-query 
quantum algorithm that distinguishes between: 

• graphs containing a {k1, …, kd} subdivided star, and 

• graphs not containing said subdivided star as a minor.

Corollary:  O(n)-query quantum algorithm 
for detecting {k1, k2, k3} subdivided star (“claw”).



Subdivided star subgraph/not-a-minor problem

• Randomly color vertices of G by vertices of subdivided star.  
Keep only correctly colored edges.  

• Evaluate the span program for s-t connectivity with 
breadcrumbs… 

Algorithm

Example: G=T

span program edges:
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Idea: s-t path traverses the subdivided star, out and back each leg.  
Paired edges force path to use same return edge.

• State the theorem(s)
• Give the span program—Explain how the path goes
• Give some examples?—Skip the analysis
• Open problems: 

• Trees
• Subgraph/not-a-minor promise problem
• Characterize for what graphs does the breadcrumb trick work

Open problems:
• Does the same algorithm work 

for any trees/forests?
• Characterize for what graphs 

breadcrumb trick works.
• Is the query complexity of the 

subgraph/not-a-minor problem 
always O(n)?



• Just describe the st-connectivity algorithm
• Briefly explain how to use a Szegedy-style quantum walk
• Show how we add dummy edges so that the span 

program can be easily factored

Time-efficient 
implementations

Span-program evaluation algorithm
Run phase estimation on 

ta
rg

et
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st-connectivity

1
-1 1

-1

1

-1 …
={balanced flows in Kn}



1. Factor the solution
- into constraints on original vertices 
& on edge vertices—now commuting

Certificate cx for input x = set of positions whose values fix f

Implementing the reflection about the 
set of balanced flows in Kn 

Flow =                s.t. ∀v,    

2.  Use phase estimation to isolate 
the +1 eigenspace, reflect, uncompute



Open problems

• Is O(n√d) promise st-connectivity query complexity optimal?  

• Efficient implementations of learning graphs

• Combine learning graphs with breadcrumb trick

• Connection to quantum walks

• Algorithms based on the superposition over the electrical flow
—are exponential speedups possible?  


