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Theorem:An optimal quantum query algorithm for
evaluating any boolean function can be built out of
two fixed reflections
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Goal: Evaluate f: {0, 1 }"—{0, 1} using

Lj







Query complexity models:

e Deterministic

e Randomized
- bounded-, zero- or one-sided error

* Nondeterministic (Certificate complexity)
e Quantum



Quantum query complexity
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Theorem:An optimal quantum query algorithm for
evaluating any boolean function can be built out of
two fixed reflections
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Clearly, w.l.o.g.,
* may assume U is independent of t

U = Zyt+ Wt| @ Up + c.c.

* or, may assume Uk is a reflection vt
R, = [1X0| ® U, + |0X1]| @ U]



Theorem:An optimal quantum query algorithm for
evaluating any boolean function can be built out of
two fixed reflections

— R HOxH R HOxH R HOx-

Theorem: The general adversary lower
bound on quantum query complexity
is also an upper bound



A certificate for input x is a set of positions whose values fix f.

(Given a certificate for the input, it suffices to read those bits)

For f=OR: Input Minimal certificate

00110 (3)
00000  {l,2,3,4,5}




C(f) = _ min maa}Xme |

st Y palilpylil >1 i f(@) £ f(y)
JiTiF£Y;

Adv(f) is a semi-definite program (SDP)



* Adversary method

Q.(f) > 29D A qy(p)

* Bennett, Bernstein, Brassard,Vazirani
9701001

* Ambainis '00

* Hoyer, Neerbek, Shi '02

* Ambainis 0305028

* Barnum, Saks & Szegedy ’03

* Laplante & Magniez 0311189

« Zhang 0311060

* Barnum, Saks 04

e Spalek & Szegedy 0409116



General adversary bound

AdvE(f) = {ﬁmeiéln} mgXpr[j]Z

st. 3 palilplil =1 i f(@) # £y

JiT;FY;

[Hoyer, Lee, Spalek 0611054]



General adversary bound

AdvT(f) = min mng”a‘xjH?

{tz; €R™ }

S.t. Z (Ugjy Ugy) j: L if f(x) # f(y)

JiTiFY;

[Hoyer, Lee, Spalek 0611054]



Theorem: The general adversary lower
bound on quantum query complexity
is also an upper bound

Adv*(f)= min mngHﬁijQ

{tUz; €R™ }

st 3 () =1 i f(@) £ F()

JT;FY;

|. Simple understanding of quantum query complexity:
* No unitaries, measurements, or time dependence
* Equivalent to span programs [Karchmer,Wigderson '93]

Quantum algorithms Span programs

query complexity witness size

(up to a constant factor, for boolean functions)



Query complexity under composition
9< * Deterministic = D(f)D
1< (f)D(g)

e Certificate < C(f)C(g

Ze |
§< « Randomized < R(f)R(g)O(logn)

Theorem: Adv™(f o §) = Adv™(f)Adv=(g)

[HLS *06, R’09]

= Q(fod) = 6(Q(f)Q(g))

“Composition” of optimal algorithms for f and
for g via tensor product of SDP vector solutions

Characterizes query complexity for read-once formulas

Q(fio---o fa) = O(AdVT(f1) - Adv¥(fa))




. Query model
. Adversary lower bounds
. Spectra of reflections

. Adversary upper bound
Q(f) = O(Adv=(f))
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R(IT)R(A) is a rotation by angle 20,
eigenvalues e*?"

A



Two subspaces will not generally lie at a fixed angle
I1




Two subspaces will not generally lie at a fixed angle
I1

1/ A

Jordan’s Lemma (1875)

Any two projections can be simultaneously block-diagonalized
with blocks of dimension at most two



Two subspaces will not generally lie at a fixed angle
I1

l/ A
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Jordan’s Lemma (1875)
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Effective Spectral Gap Lemma:

* Let Po be the projection onto eigenvectors of
R(IT)R(A) with phase less than 20 in magnitude
* Then for any v with Av = 0,

| Pollu]| < O|9]




Effective Spectral Gap Lemma:

* Let Po be the projection onto eigenvectors of
R(IT)R(A) with phase less than 20 in magnitude
* Then for any v with Av = 0,

| Pollu]| < O|9]

Pollv =0



Effective Spectral Gap Lemma:

* Let Po be the projection onto eigenvectors of
R(IT)R(A) with phase less than 20 in magnitude
* Then for any v with Av = 0,

| Pollu]| < O|9]

Proof: Jordan’s Lemma = Up to a change in basis,
A=) 1861@(58)
=37 1BX01© (o cons, iy )
Afv) = 0= o) =" dslB) @ (9)

= Polllo) = 3 dol8) ®sindy (5257 )
B:10p]<©




. Query model
. Adversary lower bounds
. Spectra of reflections

. Adversary upper bound
Q(f) = O(Adv=(f))



The algorithm:
|. Begin with an SDP solution:

> g uyy) =1 if f(z) # f(y)

JTjFY;

2. Let A = projection to the span of the vectors

0) + g5 > 1)) )

with f(y)=1

3. Starting at|0), alternate R(A) with the input oracle



A pmj{ 0) + vz 2,0 “w"yﬂ} S™ gy = 1 i f(z) £ £(9)

 f(y) =1 Jiw 7Y,
Lemma:

[T, =[0X0[+3, [5)(j|@I®|z; ) ;] 7€ AT = ||Polld]| < O]7]

The analysis:

Case f(x)=1:

0)

\ J/
V

close to

0) + m;ﬂZjUH%jWﬁ

= doesn’t move!




A pmj{ 0) + vz 2,0 “w"yﬂ} S™ gy = 1 i f(z) £ £(9)

. f(y) — 1 J: %5 7Y
Lemma:
[ =|0)0|+32; 15} @I®|z; ;) 7€ AT = ||Polld]| < O]7]
The analysis:
Case f(x)=1: Case f(x)=0:
0) 0)
cIo:g to \\V
= doesn’t move! AN ’

7e AT
= Q(1/Adv?) effective spectral gap



Summary

Open problems

Theorem: Optimal quantum
query algorithms can be built out
of two alternating reflections
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Corollary: Characterization of
quantum query complexity for
read-once boolean formulas.

Theorem:The general
adversary bound on quantum
query complexity is tight

Corollary: Quantum query
algorithms are equivalent to
span programs.

Strong direct-product theorems?

Query complexity for non-boolean functions and state generation?/

Composition for non-boolean functions?

Upper and lower bounds for zero-error quantum query complexity?

Tight characterizations for communication complexity?



