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Model: 
Complexity 
measure:

≈

[KW ’93]

[RŠ ’08]

Quantum algorithms

Black-box 
query complexity

Span programs

Witness size

• Optimal span program witness size is characterized by an SDP (Adv±)

⇒quantum query complexity characterized by the same SDP

• Span programs compose easily

⇒quantum algorithms compose easily

⇒optimal quantum algorithms for many formula-evaluation problems
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x1 x2 x3 x4 x5 x7x6 x8

ϕ(x)

Farhi, Goldstone, Gutmann ’07 algorithm

• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be 
evaluated in time N½+o(1).



• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be 
evaluated in time N½+o(1).
• Convert formula to a tree, and attach a line to the root 

• Add edges above leaf nodes evaluating to one
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• Theorem ([FGG ’07]): A balanced binary AND-OR formula can be 
evaluated in time N½+o(1).
• Convert formula to a tree, and attach a line to the root 

• Add edges above leaf nodes evaluating to one



Continuous-time quantum walk [FGG ’07]

=0

=1



Quantum walk |ψt〉 = eiAGt|ψ0〉



|ψt〉 = eiAGt|ψ0〉

ϕ(x) = 1Wave transmits! ⇒ output

Quantum walk



Two generalizations:

• Theorem ([FGG ’07]): A balanced binary AND-
OR formula can be evaluated in time N½+o(1).

Balanced, 
More gates

(Running time is poly-logarithmically slower in each case, after preprocessing.)

• Theorem ([RŠ ’08]): A balanced formula 
φ over a gate set including all three-bit 
gates can be evaluated in O(Adv(φ)) 
queries (optimal!). 

Unbalanced 
AND-OR

• Theorem ([ACRŠZ ’07]): 

• An “approximately balanced” AND-OR 
formula can be evaluated with O(√N) 
queries (optimal!).

• A general AND-OR formula can be 
evaluated with N½+o(1) queries.



• Theorem ([R, Špalek ‘08]): Let                                   
                                 Define                                           by

Let P be a span program computing f.  
Then 

➡ Many optimal algorithms: for   any ≤3-bit function (e.g., AND, OR, 
PARITY, MAJ3), and ~70 of ~200 different 4-bit functions…

• Open problems: 
• How can we find more good span programs?
• Are span programs useful for developing other qu. algorithms?

Span programs [Karchmer, Wigderson ’93]

f : {0, 1}n → {0, 1}
fk : {0, 1}nk

→ {0, 1}
f

f f f

f f f · · ·
...










.

k levels

f

span program
complexity measure

quantum query 
complexity

Q(fk) = O
(
wsize(P )k

)



• Time complexity = number of gates

• Query complexity = number of input bits that must be looked at

• e.g., Search: 

• classical query complexity of ORn is Θ(n) for both deterministic & 
randomized algorithms

• quantum query complexity is Q(ORn)=Θ(√n), by Grover search

• Most quantum algorithms are based on good qu. query algorithms

• Provable lower bounds

Quantum query complexity Q(f)



• Polynomial method: 

• for total functions 

• Adversary method: “How much can be learned from a single query?”

Two methods to lower-bound Q(f)

Element Distinctness: n2/3 n1/3

Ambainis formula: ≤2d 2.5d

d̃eg Adv

(n=4d)

Adv(f) = max
adversary matrices Γ:

Γ≥0

‖Γ‖
maxj∈[n]‖Γj‖

Q(f) = Ω
(
d̃eg(f)

)

Q(f) ≤ D(f) = O
(
d̃eg(f)6

)

• Incomparable lower bounds: 



Adv(f) = max
adversary matrices Γ:

Γ≥0

‖Γ‖
maxj∈[n]‖Γj‖

Polynomial method

Adversary bound

• General adversary bound

Q(f) = Ω(Adv(f))

Q(f) = Ω(d̃eg(f))

Adv±(f) = max
adversary matrices Γ

‖Γ‖
maxj∈[n]‖Γj‖

Q(f) = Ω(Adv±(f))[Høyer, Lee, Špalek ’07]

Element Distinctness: n2/3 n1/3 ?? n2/3

Ambainis formula: ≤2d 2.5d 2.513d ≤2.774d

d̃eg Adv

(n=4d)

Adv± Q



• Theorem 1: For any 

           and

• Nearly tight characterization of quantum query complexity; the general 
adversary bound is always (almost) optimal

• Simpler, “greedier” semi-definite program than [Barnum, Saks, Szegedy ’03]

The general adversary bound is nearly tight

Q(f) = Ω(Adv±(f))

Q(f) = O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

)
[HLŠ ’07]

f : {0, 1}n → {0, 1}

Element Distinctness: n1/3 n2/3 ≥n2/3/log n n2/3

Ambainis formula: 2.5d ≤2d 2.513d 2.513d

d̃egAdv

(n=4d)

Adv± Q



• Theorem 1: For any 

• Theorem 2: For any boolean function f, 

• Theorem 3: For any span program P computing f, 

Two steps to proving Theorem 1…

Q(f) = O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

)
f : {0, 1}n → {0, 1}

inf
P computing f

wsize(P ) = Adv±(f)

Q(f) = O

(
wsize(P )

log wsize(P )
log log wsize(P )

)



• Theorem 2: 

• Theorem 3: If P computes f, Q(f) = O

(
wsize(P )

log wsize(P )
log log wsize(P )

)

inf
P computing f

wsize(P ) = Adv±(f)

(up to a log factor)

= O(Q(f))

Span programs are equivalent to quantum computers!

Quantum algorithms
query complexity

Span programs
witness size

Model: 
Complexity 
measure:

≈



• Theorem 2: 

• Theorem 3: If P computes f, 

inf
P computing f

wsize(P ) = Adv±(f) = O(Q(f))

Q(fk
P ) = O

(
wsize(P )k

)• Thm. [RŠ ‘08]: 

• Thm. [HLŠ ’07, R ’09]: 

Using Theorem 2, implies optimal qu. algorithm for 
evaluating balanced formulas over any finite gate set

Adv±(fk) = O
(
Adv±(f)k

)

Q(f) = O

(
wsize(P )

log wsize(P )
log log wsize(P )

)



''S S

Problem: Evaluate '(x).

Def.: Read-once formula ' on gate set S
  = Tree of nested gates from S, with each input appearing once

Example: S = {AND, OR}:

x12x11x10x6 x1x9

x8x7

x5

x4x2 x3

AND AND OR

AND

AND

OR

OR

ϕ(x)

x1



x1

MAJ MAJMAJ MAJ MAJMAJ

x1 x1

MAJ

MAJ

MAJ

MAJ

MAJ

ϕ(x)

MAJMAJ

...

Balanced MAJ3

OR

x2x1 xN· · ·

Θ(n)

AND

OR OR

AND ANDAND AND

x6 x8x7x5x4x2 x3x1

Θ(n0.753…)
[S’85, SW’86, S’95]

General read-once AND-OR

Balanced AND-OR

Conj.: Ω(D(f)0.753…) [SW ‘86]

[Nisan ‘91]: R2(f) = Ω(D(f)⅓)

Ω(n0.51) [HW’91]

Ω(2.333d), O(2.654d)
[JKS ’03]

Quantum

Θ(√n)

...

(fan-in two)

Θ(2d)

    

Θ(√n)

Ω(√n),         √n⋅2O(√log n)

[Farhi, Goldstone, Gutmann ’07]
[Ambainis, Childs, R, Špalek, Zhang ’07]

[ACRŠZ ’07]

   

[RŠ ’08]

[Barnum, Saks ’04]

[Grover ’96]

[Jayram, Kumar, Sivakumar ’03]

[Heiman, Wigderson ’91]

[Snir ’85] 
[Saks, Wigderson ’86]

[Santha ’95](fan-in two case)

Classical



Conj.: Ω(D(f)0.753…) [SW ‘86]

Balanced MAJ3 …

Classical

Θ(n)

Θ(n0.753…)

General read-once AND-OR

Balanced AND-OR

[Nisan ‘91]: R2(f) = Ω(D(f)⅓)

Ω(n0.51)

Ω(2.333d), O(2.654d) Θ(2d)
    

Ω(√n), √n⋅2O(√(log n))

ORn (Search)

“Approximately balanced” 
formula over an arbitrary 
finite gate set

???
Θ(Adv±(f))

[R ’09]

Unbalanced formulas
Query complexity 

now understood, but 
not time-complexity

Θ(√n)

Θ(√n)

Quantum



• Theorem 1: For any 

• Theorem 2: For any boolean function f, 

• Theorem 3: For any span program P computing f, 

Two steps to proving Theorem 1…

Q(f) = O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

)
f : {0, 1}n → {0, 1}

inf
P computing f

wsize(P ) = Adv±(f)

Q(f) = O

(
wsize(P )

log wsize(P )
log log wsize(P )

)



• Definition: Span program P on n bits

• vector space V

• target vector

• subspaces   V1,0     V1,1     V2,0      V2,1   …    V n,0     Vn,1 

• P “computes”

• Example: V=C2

|t〉

0

|t〉

fP : {0, 1}n → {0, 1}

V1,0

Vn,1

fP (x) = 1 ⇐⇒ |t〉 ∈ Span ∪j Vj,xj

V1,1

V2,1V1,0 = V2,0 = 0

|t〉

=⇒ fP = AND2



|t′〉

•                                   but P’ seems better…

Example

V1,1

V2,1
V1,0 = V2,0 = 0

|t〉P: P’: V1,1’

V2,1’

V1,0’ = V2,0’ = 0

fP = fP ′ = AND2

wsize(P, 11) > wsize(P ′, 11)



wsize(P, x) = min
|w〉: AΠ(x)|w〉=|t〉

‖|w〉‖2

• Span program P:   target 

                                   V1,0               V1,1           …           V n,0                Vn,1 

• Def.: If                 , let  

Span programs in coordinates

|t〉

A = |v1,0,1〉 · · · |v1,0,m〉 |v1,1,1〉 · · · |v1,1,m〉 |vn,1,1〉 · · · |vn,1,m〉|vn,0,1〉 · · · |vn,0,m〉









|t〉 ∈ Range(AΠ(x))

Π(x) = projection onto available coordinates

fP (x) = 1 ⇐⇒
Then

f(x) = 1

(intuition: want a short witness)



wsize(P, x) = min
|w〉: AΠ(x)|w〉=|t〉

‖|w〉‖2

=⇒

=⇒

bI|J|bI1

|t〉

= sp
an of available 

columns o
f A

0

fP (x) = 0 |t〉 /∈ Range(AΠ(x))

⇐⇒ orthogonal to                             with∃ |w′〉 Range(AΠ(x)) 〈t|w′〉 #= 0

|w′〉

|t〉 ∈ Range(AΠ(x))fP (x) = 1

(intuition: want a short witness)

wsize(P, x) = min
|w′〉: 〈t|w′〉=1
〈w′|Π(x)A=0

‖A†|w′〉‖2

(intuition: if      is close to the span of available 
columns of A, then wsize should be large)

|t〉

Definition: wsize(P ) = max
x

wsize(P, x)

Ran
ge(

AΠ(x)
)



• Define a span program P as follows:

• Vector space V = C

• Target vector 

➡  

➡  

Example: Search (OR)

V1,0        V1,1

A = 0 1
( )

V2,0        V2,1

0 1

Vn,0        Vn,1

0 1· · ·

fP = ORn

wsize(P, 0n) =
√

n

|t〉 = n1/4

|w′〉 = 1/n1/4

wsize(P, 10 . . . 0) =
√

n |w〉 = (0, n1/4, 0, . . . , 0) . . .

wsize(P ) =
√

n



• Why is this the right definition?

1. Negating a span program leaves wsize invariant

2. Composing span programs: wsize is multiplicative

3. Leads to quantum algorithms

wsize(P, x) = min
|w〉: AΠ(x)|w〉=|t〉

‖|w〉‖2

=⇒

=⇒

fP (x) = 0

fP (x) = 1

(intuition: want a short witness)

wsize(P, x) = min
|w′〉: 〈t|w′〉=1
〈w′|Π(x)A=0

‖A†|w′〉‖2

(intuition: if      is close to the span of available 
columns of A, then wsize should be large)

|t〉

Definition: wsize(P ) = max
x

wsize(P, x)

Q(fk
P ) = O

(
wsize(P )k

)
[RŠ‘08]

(Theorem 3)Q(fP ) = Õ
(
wsize(P )

)



• Theorem 2: For any boolean function f,  

Proof of Theorem 2

inf
P : fP =f

wsize(P ) = Adv±(f)



(                  itself is the witness)

• Theorem 2: For any boolean function f, 
Proof: 

inf
P : fP =f

wsize(P ) = Adv±(f)

V1,0               V1,1           …      V n,0                Vn,1

|v1,0,1〉 · · · |v1,0,m〉 |v1,1,1〉 · · · |v1,1,m〉 |vn,1,1〉 · · · |vn,1,m〉|vn,0,1〉 · · · |vn,0,m〉









We look for span programs where the rows of A correspond to {x : f(x) = 0}

f−1(0)




→
0 0

…and in the row corresponding to x, 
    the columns available for input x are all zero

(Such span programs are said to be in “canonical form” [KW’93].)

|t〉 =





1
1
...
1




x = 10 . . . 0

target is all 
1s vector

This form guarantees that f(x) = 0 ⇒ fP (x) = 0
|w′〉 = |x〉







x = 011 . . .1

➡  

Example: AND



|t〉 =





1
1
...
1





fP = ANDn

0
1
...
0

1
0
...
0

0
0
...
1

V1,1 V2,1 Vn,1

→

. . .

· · ·



V1,0               V1,1           …      V n,0                Vn,1

|v1,0,1〉 · · · |v1,0,m〉 |v1,1,1〉 · · · |v1,1,m〉 |vn,1,1〉 · · · |vn,1,m〉|vn,0,1〉 · · · |vn,0,m〉







 f−1(0)




→

0 0

in the xth row, the columns available for input x are all 0; hence 

|t〉 =





1
1
...
1




x = 10 . . . 0

f(x) = 0 ⇒ fP (x) = 0

Now consider a  

We want to find vectors 

〈vx1| 〈vxn|

y ∈ f−1(1)

|vy1〉, . . . , |vyn〉

such that                           , ∀ x ∈ f−1(0) 1 =
∑

j:xj !=yj

〈vxj |vyj〉

The witness size is max
x

∑

j

‖|vxj〉‖2



V1,0               V1,1           …      V n,0                Vn,1

|v1,0,1〉 · · · |v1,0,m〉 |v1,1,1〉 · · · |v1,1,m〉 |vn,1,1〉 · · · |vn,1,m〉|vn,0,1〉 · · · |vn,0,m〉







 f−1(0)




→

0 0

|t〉 =





1
1
...
1




x = 10 . . . 0〈vx1| 〈vxn|

=⇒ inf
P : fP =f

wsize(P ) ≤ inf
{|vxj〉} :

if f(x) "= f(y),
P

j:xj !=yj
〈vxj |vyj〉=1

max
x

∑

j

‖|vxj〉‖2

= min
X!0:

∀(x,y)∈∆,
P

j:xj !=yj
〈x,j|X|y,j〉=1

max
x

∑

j

〈x, j|X|x, j〉

= Adv±(f)

(Cholesky decomposition)

(SDP duality) !



• Theorem 3: For any span program P,  

Proof of Theorem 3

Q(fP ) = O

(
wsize(P )

log wsize(P )
log log wsize(P )

)

1. 
Correspondence 
between P and 

bipartite graphs 
GP(x)

2. 
Eigenvalue-zero 

eigenvectors imply an 
“effective” spectral 

gap around zero

3. 
Quantum algorithm 

for detecting 
eigenvectors of 

structured graphs



• Def.: Let G0(x) be the bipartite graph with biadjacency matrix* 

              Let G1(x)                           “                        “

Input vertices 
& edges

Output vertex & edges, 
weights given by 

*Adjacency matrix is

(
|t〉 A
0 1−Π(x)

)

(
A

1−Π(x)

)

(
0 B

B† 0

)

Bipartite graph with 
edge weights given by A

each weight-one input edge 
is present iff corresponding 

input bit xj = 0
|t〉




 
       

       



G1(x) G0(x)



• Lemma: G1(x) has an eigenvalue-zero eigenvector overlapping the 
output vertex                            

    G0(x) has an eigenvalue-zero eigenvector overlapping                                

• Def.: Let G0(x) be the bipartite graph with biadjacency matrix* 

              Let G1(x)                           “                        “

fP (x) = 0

(
|t〉 A
0 1−Π(x)

)

(
A

1−Π(x)

)

fP (x) = 1

|t〉

Proof: For G1(x): 
(

|t〉 A
0 1−Π(x)

)(
1

|v〉

)
0 =

Π(x)|v〉 = |v〉 and⇔ |t〉 = −A|v〉

!⇔ fP (x) = 1

Note: After normalizing the eigenvector, squared overlap on the 
output vertex is 1/(1+wsize(P,x)).  Small wsize         large overlap

⇔

⇔

⇔



Small-eigenvalue analysis2

When                    , G0(x) having an eigenvalue-zero 
eigenvector with large (δ) squared overlap on      implies that 
G1(x) has a large (√δ) “effective” spectral gap around zero.

fP (x) = 0
|t〉

(
|t〉 A
0 1−Π(x)

)(
A

1−Π(x)

)
G0(x) G1(x)

Idea: Think of G1(x) as a perturbation of G0(x).



Small-eigenvalue analysis2

Good eigenvalue-zero eigenvector        Large effective spectral gap⇒

Theorem. Let G be a weighted bipartite graph on V = T ! U . Assume that
for some δ > 0 and |t〉 ∈ CT , the adjacency matrix has an eigenvalue-zero
eigenvector |ψ〉 with

|〈t|ψT 〉|2

‖|ψ〉‖2 ≥ δ

Let G′ be the same as G except with a new vertex v added to the U side, and
for i ∈ T the new edge (τi, v) weighted by 〈i|t〉. Take {|λ〉} a complete set of
orthonormal eigenvectors of AG′ . Then for all Λ ≥ 0,

∑

λ: |λ|≤Λ

|〈v|λ〉|2 ≤ 8Λ2

δ

(Think                                                              )δ = 1/wsize(P )2, Λ =1 /wsize(P )



Quantum algorithm3

Algorithm: Start at the output vertex and “measure” the adjacency 
matrix (as a Hamiltonian).  Output 1 iff the measurement returns 0.  

Key technical step: Since we have no control over the norm of the matrix, 
need [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo ’09] to simulate the 
measurement with a log / log log overhead factor.  

Scale the target vector down by 1/√wsize(P).

• When fP(x) = 1, there is an eigenvector 
with large (≥ ½) squared overlap on the 
output vertex

• When fP(x) = 0, there is a spectral gap of 
1/wsize(P) around zero

!



• Theorem 2: For any boolean function f, 

• Theorem 3: For any span program P, 

Summary

inf
P computing f

wsize(P ) = Adv±(f)

Q(f) = O

(
wsize(P )

log wsize(P )
log log wsize(P )

)

Optimal quantum algorithm for 
evaluating balanced formulas over 
any finite gate set

Main corollaries

1

2

Span programs are (almost) 
equivalent to quantum computers

The general adversary bound is 
(almost) optimal for every total or 
partial function 

3

f : {0, 1}n → {0, 1}poly(log n)



∑

x:f(x)=0

n∑

j=1

|x〉〈xj | ⊗〈 vxj |

= min
{Xj!0}:

∀(x,y)∈∆,
P

j:xj !=yj
〈x|Xj |y〉=1

max
x

∑

j

〈x|Xj |x〉• Find a solution to: 

• Take the Cholesky decomposition:

• Use the entries of the vectors to weight the edges of a graph, and run 
phase estimation on the quantum walk…

Recipe for finding optimal quantum query algorithms









Adv±(f)

{|vxj〉} : 〈vxj |vyj〉 = 〈x|Xj |y〉

1
...
1

(∗)

• But how can we find good solutions to      ?(∗)

BG =



• Can the log overhead factor be removed?  Is Adv± tight in the 
continuous-query model?

• Functions with non-binary domains?

• Is there a good classical algorithm for evaluating span programs?  Any 
algorithm faster than O(wsize(P)6) would give a better relationship 
between classical and quantum query complexities.  

• Our results apply to both total and partial functions, though (e.g., Simon’s prob.)  

• Robustness?

• More explicit and time-efficient algorithms

Open problems

f : {1, 2, . . . , k}n → {0, 1}

D(f) = O(Q(f)6)



Blank slide

Thank you!


