Quantum algorithms
based on span programs

Ben Reichardt
|IQC, U Waterloo

[arXiv:0904.2759]

Quantum algorithms
Model:
Complexit
measire: ’ Black-box
query complexity
_

Span programs

Witness size

[KW "93]

[RS "08]

e Optimal span program witness size is characterized by an SDP (Adv+)

= quantum query complexity characterized by the same SDP

* Span programs compose easily

= quantum algorithms compose easily

= optimal quantum algorithms for many formula-evaluation problems

Farhi, Goldstone, Gutmann "07 algorithm

e Theorem ([FGG '07]): A balanced binary AND-OR formula can be
evaluated in time N%+o(),

I1 Lo I3 Ty Ly e X7 I8

Farhi, Goldstone, Gutmann "07 algorithm

e Theorem ([FGG '07]): A balanced binary AND-OR formula can be
evaluated in time N%+o(),

e Convert formula to a tree, and attach a line to the root

* Add edges above leaf nodes evaluating to one

Farhi, Goldstone, Gutmann "07 algorithm

e Theorem ([FGG '07]): A balanced binary AND-OR formula can be
evaluated in time N%+o(),

e Convert formula to a tree, and attach a line to the root

* Add edges above leaf nodes evaluating to one

L1 Zro X3 L4 T5 e X7 I8

Continuous-time quantum walk [FGG "07]

i

Quantum walk [¢;) = € |aq)

Quantum walk [¢;) = € |aq)

V.V V.V

Wave transmits! = outputh(ZC) =1

Two generalizations:

* Theorem ([FGG '07]): A balanced binary AND-
OR formula can be evaluated in time N*+o(),

Unbalanced
AND-OR

® Theorem ([RS ’08]): A balanced formula

¢ over a gate set including all three-bit

* An “approximately balanced” AND-OR gates can be evaluated in O(Adv(¢))
formula can be evaluated with O(VN)

e Theorem ([ACRSZ '07]):

queries (optimal!).
queries (optimal!).

e A general AND-OR formula can be
evaluated with N*+(queries.

(Running time is poly-logarithmically slower in each case, after preprocessing.)

Span programs [Karchmer, Wigderson "93]

e Theorem ([R, Spalek ‘08]): Let f :{0,1}" — {0,1} / \
Define f*:{0,1}"" — {0,1} by /‘\

f f f ¢ klevels

A

Let P be a span program computing {.

Then f f . f J
Q(f*) = O(wsize(P)") :
quantum query span program
complexity complexity measure

= Many optimal algorithms: for f any <3-bit function (e.g., AND, OR,
PARITY, MAJ3), and ~70 of ~200 different 4-bit functions...
e Open problems:

 How can we find more good span programs?

e Are span programs useful for developing other qu. algorithms?

Quantum query complexity Q(f)

e Time complexity = number of gates
e Query complexity = number of input bits that must be looked at
e e.g. Search:

e classical query complexity of OR, is ©(n) for both deterministic &
randomized algorithms

e quantum query complexity is Q(OR,)=0O(vn), by Grover search

e Most quantum algorithms are based on good qu. query algorithms

e Provable lower bounds

Two methods to lower-bound Q(f)

e Polynomial method: Q(f) = (deg(f))
e for total functions Q(f) < D(f) = 0(@(]'?)6)

e Adversary method: “How much can be learned from a single query?”

I
Adv(f) = . I
adversary matrices I': maxje ||Fg ||
'>0

* Incomparable lower bounds:

Eiéé | Adv

Element Distinctness: n%/3 n!'/3

Ambainis formula: <2d 2.5d (n=44)

Polynomial method Q(f) = Q(aéé(f)

Adversary bound Q(f) = Q(Adv(f))
I

AN = ersart X e s Tom | ||||r ||

adversary matrices [': 11l ; ;

oo Xjen]llt g

e General adversary bound [Heyer, Lee, Spalek '07] Q(f) = Q(AdVT(f))

AdvE(f) = max It

adversary matrices I' manE[n] ||Fj ||

Eiéém AdVW AdviE Q

Element Distinctness: n2/3 n!/3 ?? n2/3

Ambainis formula; <?2d 2.5d 2.513d <2.7744 (n=44)

The general adversary bound is nearly tight

e Theorem 1: For any f : {0,1}" — {0,1}
Q(f) = QAdv=(f)) [HLS07]

B N log Advi(f)
and Q(f) = O(Adv (f)log log Advi(f)>

e Nearly tight characterization of quantum query complexity; the general
adversary bound is always (almost) optimal

Adv Hég Adv® @
Element Distinctness: n'/3 n?3 >n?3/log n n/3
Ambainis formula: 2.54 <2d 2.5134 2.513¢ (n=49)

e Simpler, “greedier” semi-definite program than [Barnum, Saks, Szegedy "03]

Two steps to proving Theorem 1...

e Theorem 1: For any f : {0,1}" — {0,1}

log AdvE(f))
log log Adv=(f)

Q(f)=0 (Advi(f)

e Theorem 2: For any boolean function f,

inf wsize(P) = AdvE(f)

P computing f

¢ Theorem 3: For any span program P computing f,

Q) = O we(p) £)

log log wsize(P)

e Theorem 2: inf Wsize(P) = AdVi(f) = O(Q(f))

P computing f

1 .
e Theorem 3: If P computes f, Q(f) =0 (WSize(P) og wsize(P) >

log log wsize(P)

Span programs are equivalent to quantum computers!

(up to a log factor)

Complexity . . .
query complexity witness size

measure:

Model: [Quantum algorithms} N[Span programs]

e Theorem 2: inf WSiZG(P) = Advi(f) = O(Q(f))

P computing f

1 ize(P
e Theorem 3: If P computes f, Q(f) =0 (WSize(P) og wsize(P) >

log log wsize(P)

4)
e Thm. [RS ‘08]:

Q(fllf)) = O(Wsize(P)k)
e Thm. [HLS 07, R ’09]:

Adv™(fF) = O(Adv™(£)")
V.

Using Theorem 2, implies optimal qu. algorithm for
evaluating balanced formulas over any finite gate set

Def.: Read-once formula ¢ on gate set S
= Tree of nested gates from S, with each input appearing once

Problem: Evaluate o(x). L7 L8

Ly b2 T3 da Te (OR) L9 Tio T11 T12

A\

AND) (AND) 5

Classical Quantum
L1 Lo -« -- L N
(on) O(n) O©(+/n)
[Grover ’96]
Balanced AND-OR

T To X3 T4 Ty Tg T7 Ts

O(n0753...) O©(+/n)

[Snir ’85]
[Saks,Wigderson ’86]
[Santha "95]

Q(n%>") Q(+/n), /n-20/iogn)
[Heiman,Wigderson ’91] [Barnum, Saks '04] [ACRSZ *07]

[Farhi, Goldstone, Gutmann "07]
[Ambainis, Childs, R, Spalek, Zhang '07]

(fan-in two case)

General read-once AND-OR

Balanced MA]Js

MAJ MAJ MAJ

0(2.3339), O(2.6549) O(2¢)

s [Jayram, Kumar, Sivakumar ’03] 5
[RS ’08]

ORn (Search)

Balanced AND-OR

General read-once AND-OR

Balanced MA]Js ...

“ Approximately balanced”
formula over an arbitrary
finite gate set

Unbalanced formulas

Classical
O(n)
@(n0.753...)

Q(nO.SI)

(2(2.3339), O(2.6549)

277

Quantum

O©(v/n)
O(+/n)

Q(+/n), vn- 20(V(log n))

O(29)

O(Adv(f))
[R’09]
Query complexity

now understood, but
not time-complexity

Two steps to proving Theorem 1...

e Theorem 1: For any f : {0,1}" — {0,1}

log AdvE(f))
log log Adv=(f)

Q(f)=0 (Advi(f)

e Theorem 2: For any boolean function f,

inf wsize(P) = AdvE(f)

P computing f

¢ Theorem 3: For any span program P computing f,

Q) = O we(p) £)

log log wsize(P)

* Definition: Span program P on n bits
* vector space V

* target vector [t)

e subspaces Vio Vi1 Vo Va1 ... Voo Vi
| | | | | | | | | | | |

e Pcomputes” fp: {0,1}" = {0,1}

fp(x) =1 <= |t) € Span U; Vj ,,

e Example: V=C2 £)

Vi1 —> fp = AND,
Vio=Va0=0 Vo1

Example

Vio=V20=0
Vio=V20=0 Vo1

e fp = fpr = AND, but P’ seems better...

wsize(P, 11) > wsize(P’, 11)

Span programs in coordinates

e Span program P: target |t)

[I(x) = projection onto available coordinates

Then
fp(x) =1 <= |t) € Range(All(x))

o Def.:If f(x) =1, let wsize(P,x) = min w)l|?
Cf1f f(r) = 1, let wsise(P.r) = omin ju)]

(intuition: want a short witness)

fp(x) =1 = [t) € Range(All(x))

wsize(P, x) = min [w)||?

(intuition: want a short witness)
jw): All(z)|w)=|t)

fr(z) =0 = |[t) ¢ Range(AIl(x))
< 3 |w') orthogonal to Range(All(z)) with (tjw’) # 0

wsize(P, x) = min [|AT|Jw')|)?
lw’): (tlw’y=1
(w’|TI(x) A=0
)
ﬂ\\,@o\e (intuition: if |¢) is close to the span of available
(2 P columns of A, then wsize should be large)
&

! Definition: wsize(P) = max wsize(P, x)

\\, —

Example: Search (OR)

* Define a span program P as follows:

* Vector space V =C

e Target vector |t) = nt/4
V1o Vi1 Vao
A= (0 1 0
- fP — ORn

wsize(P,0™) = /n

wsize(P,10...0) = v/n
= wsize(P) = v/n

V2,1 Vn,O an
1 0 1)
wl> — 1/n1/4

w) = (0,n'/*,0,...,0)

r)=1 — size(P, x) = min w)||?
fr(a) wize(Pa) = omin)]

(intuition: want a short witness)

@) =0 = wsin(Pr) = min, |70
w’): (tlw')y=
(w'|TI(x)A=0

(intuition: if |¢) is close to the span of available
‘ - ~ columns of A, then wsize should be large)

1‘ Definition: wsize(P) = max wsize(P, z) |
| x |

e Why is this the right definition?
1. Negating a span program leaves wsize invariant

2. Composing span programs: wsize is multiplicative

3. Leads to quantum algorithms Q(fp) = O(WSize(P)k) [RS*08]
Q(fp) = é(WSiZG(P)) (Theorem 3)

Proof of Theorem 2

e Theorem 2: For any boolean function f, P.ifnf_f wsize(P) = Adv™(f)

e Theorem 2: For any boolean function f, P_ifnf_f wsize(P) £ Adv™(f)
Proof: o

We look for span programs where the rows of A correspond to {x : f(x) = 0}

target is all

1s vector Vi Vi1 e V0 Vi1
1 1 1 1 1 1 1 1 1
1
|t> — * |’01’0’1> o ‘Ul’o7m> ‘U171,1> T "Ul,l,m> ‘Un70,1> o |Un,07m> ‘Un71,1> T |Un,l7m> f_l (O)
: | | | |
1 —0— — 00— x=10...

...and in the row corresponding to x,
the columns available for input x are all zero

(Such span programs are said to be in “canonical form” [Kw93].)

This form guarantees that f(z) =0 = fp(xz) =0

(Jw") = |z) itself is the witness)

Example: AND

Vi1 Va2 Vi1

1) ! | 0 |) e =011
=] . o X
iy 0 0 1

= fp = AND,,

= . [v1,01) -+ [VL,00m) 01,0,1) - [V 1,m)

| | | |
1 _<Ux1|_ —0—

V n,0

0n,0,1)+ [Un0m) [0m11) [0 1) l f71(0)
| | | |
—0)— _<fUam|_ X :,10...0

in the xth row, the columns available for input x are all 0; hence

flx)=0 = fp(z)=0

Now considera y € f~!(1)

We want to find vectors |vy1), ..., |Uyn)

such that vz e f71(0),

The witness size is max Z vz

J

1= Z (Vzj]vy;)

J:T; #Y;

Vio Vi1 ... Vo Vi1

)
1

) = ' 01,000 - [vr0m) [01,0,0) - [v1,1,m) Vr,0,1) = [Vn,0,m) [Vn,1,1) * [Vn,1,m) f_l(o)
: | | | | | | | |
1 — (Vg1 |— 00— — 00— —{(Ugn|— lelo.. 0
inf wsize(P) < inf max v)P

= plp el gt e 3 ez

i F(@) # F0) 00y (Vo0)=]

- e mgxz (z,j] X2, j)
V(@ YER D jia sy, (001X y5)=1 g

(Cholesky decomposition)

= AdvE(f) (SDP duality)]

Proof of Theorem 3

log wsize(P))

e Theorem 3: For any span program D, Q(fp)=0 (WSize(P) log log wsize(P)

1. 2. 3.
Correspondence Eigenvalue-zero Quantum algorithm
between P and eigenvectors imply an for detecting
bipartite graphs “etfective” spectral eigenvectors of

Gr(x) gap around zero structured graphs

e Def.: Let Go(x) be the bipartite graph with biadjacency matrix* (A)

1—1II(x)
1 1/ ’t> A
Let G1(x) 0 1-II(x)
Bipartite graph with
edge weights given by A
O

Input vertices
& edges
'0) 2]

each weight-one input edge
% is present iff corresponding

input bit xj=0

Output vertex & edges,
weights given by |t)

e *Adjacency matrix is
Gl\(iﬁi\ Go(z) 0 B
BT 0

e Def.: Let Go(x) be the bipartite graph with biadjacency matrix* (1 _f_[(x))

) A
Let Gi(x) ” ! (0 1-— H(a:))

e Lemma: Gi(x) has an eigenvalue-zero eigenvector overlapping the
output vertex < fp(zr) =1

Go(x) has an eigenvalue-zero eigenvector overlapping |t) < fp(z) =0

Proof: For Gi(x): 0= (@ 1 —f‘l(x)) (I’l;)

< I@)lv) =|v) and [t) =—Av)

<~ fp(x) =1 []

Note: After normalizing the eigenvector, squared overlap on the
output vertex is 1/(1+wsize(P,x)). Small wsize < large overlap

(2) Small-eigenvalue analysis

When fp(x) =0, Go(x) having an eigenvalue-zero
eigenvector with large (8) squared overlap on |t) implies that
Gi(x) has a large (V) “effective” spectral gap around zero.

Go(z) G1(z)

(o) (0 Te)

Idea: Think of Gi(x) as a perturbation of Go(x).

(2) Small-eigenvalue analysis

Theorem. Let G be a weighted bipartite graph on V =T U U. Assume that
for some § > 0 and |t) € C”', the adjacency matriz has an eigenvalue-zero

eigenvector |1) with

()|’
l)°

Let G’ be the same as G except with a new vertex v added to the U side, and
for i € T the new edge (7;,v) weighted by (i|t). Take {|\)} a complete set of
orthonormal eigenvectors of Aqg:. Then for all A > 0,

> e < 2

A [AI<A

>

Good eigenvalue-zero eigenvector = Large effective spectral gap

(Think § = 1/wsize(P)*, A =1 /wsize(P))

(3) Quantum algorithm

© Scale the target vector down by 1/vwsize(P).

e When fp(x) = 1, there is an eigenvector

° with large (> V%) squared overlap on the
o output vertex

e When fp(x) = 0, there is a spectral gap of
o) 1/wsize(P) around zero

Algorithm: Start at the output vertex and “measure” the adjacency
matrix (as a Hamiltonian). Output 1 iff the measurement returns 0.

Key technical step: Since we have no control over the norm of the matrix,
need [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo '09] to simulate the
measurement with a log / log log overhead factor. L]

Summary Main corollaries

The general adversary bound is
(almost) optimal for every total or

_ (1
 Theorem 2: For any boolean function f, Q , ,
partial function

o . L :l:
P corrg)llfting fws1ze(P) = Adv=(f) f:40,1}" — {0, 1}poly(10g n)

2) Optimal quantum algorithm for
evaluating balanced formulas over

e Theorem 3: For any span program P, any finite gate set

) . log wsize(P)
Qf) =0 (WSIZG(P) log log WSiZe(P)>

3) Span programs are (almost)
equivalent to quantum computers

Recipe for finding optimal quantum query algorithms

Find a solution to: Adv=(f) : min mgxz (x| X;|x) ()
Take the Cholesky decomposition: {|vaj)} : (vej|vy;) = (x| X;|y)

Use the entries of the vectors to weight the edges of a graph, and run
phase estimation on the quantum walk...
1

Be=| | D D la)@|®(vl
i x:f(x)=07=1

But how can we find good solutions to (*)?

Open problems

Can the log overhead factor be removed? Is Adv+ tight in the
continuous-query model?

Functions with non-binary domains? f:{1,2,...,k}" — {0,1}

Is there a good classical algorithm for evaluating span programs? Any
algorithm faster than O(wsize(P)¢) would give a better relationship
between classical and quantum query complexities. D(f) = O(Q(f)®)

e Qur results apply to both total and partial functions, though (e.g., Simon’s prob.)
Robustness?

More explicit and time-efficient algorithms

Thank you!

