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• What is the power of 

• Quantum information

• Applications to fault tolerance:

• FT threshold upper bounds based on Gottesman-Knill Thm

• E.g., 15% general, 30% dephasing noise on π/8 gate [Virmani/Huelga/Plenio ‘05], 

• 45% depolarizing noise [Buhrman/Cleve/Laurent/Linden/Schrijver/Unger QIP 2006]

• FT threshold lower bounds

• E.g., estimated 3% depolarizing noise, using error detection [Knill ‘05], 

• proven 0.1% depolarizing noise for error-detection-based scheme [R’06]

Magic states distillation problem:

?
noisy ancilla-assisted,
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stabilizer operations



• Stabilizer operations = Clifford group unitaries (e.g., CNOT, H, …), Pauli 
operator measurement and eigenstate preparation.

• Stabilizer states = states preparable with stabilizer operations, or mixtures 
thereof.

• Remarks:

• For today, stabilizer operations are perfect, not faulty.

• Gottesman-Knill theorem efficiently simulates classically-controlled 
stabilizer operations. 

Stabilizer operations



• Shor ‘97: classically-controlled stabilizer operations together with repeated 
preparation of

gives quantum universality.  (Generalized by Gottesman, Chuang ‘99.)

Ancilla-assisted stabilizer operations
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• Shor ‘97: classically-controlled stabilizer operations together with repeated 
preparation of

gives quantum universality.  (Generalized by Gottesman, Chuang ‘99.)

• Knill/Laflamme/Zurek ‘97: Reduced universality to preparation of 

and gave a purification network for noisy ancilla states.

Ancilla-assisted stabilizer operations
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• Shor ‘97: classically-controlled stabilizer operations and repeated 
preparation of                                                         gives universality.

• Knill/Laflamme/Zurek ‘97: Reduced to                   , gave a purification 
procedure for noisy ancilla states.

• Dennis ‘01: Reduced to preparation of 

• New idea: Considered recursive purification/distillation of noisy ancilla 
states, showed that up to ~7%        noise can be tolerated

(In fact, up to exactly 25% of this noise can be tolerated, or exactly 40% depolarizing noise — 
and both numbers are tight.)
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• Shor ‘97: classically-controlled stabilizer operations and repeated 
preparation of                                                         gives universality.

• Knill/Laflamme/Zurek ‘97: Reduced to                   , gave a purification 
procedure for noisy ancilla states.

• Dennis ‘01: Recursive purification of 

★ Bravyi/Kitaev ‘05: Formalized general problem, introduced recursive 
purification based on codes, and gave new purification protocol.
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• Flip a coin with bias ε.  To amplify the bias to ~2ε, flip two coins and 
condition on their outcomes being the same.

•  

•                                                                   

   provided z>0.   

• Similarly, running parity checks in the dual basis will converge 
to                              provided x>0.

Example: Parity checks

* AKA Partner-pairing algorithm in heat-bath algorithmic cooling

ρ(x, y, z) = 1
2 (I + xX + yY + zZ) = 1

2

(
1+z x−iy
x+iy 1−z

)

ρ(1, 0, 0) = |+〉〈+|



• Parity checks converge to                            if z>0.

• Dual p. checks converge to                             if x>0.

• Repeat: 

• With probability 1/2, apply P then D

• With probability 1/2, apply D then P

• Converges close to                                    Hadamard eigenstate 

provided                        with x+z>1. 

• Tight!  If x+z=1, then     is a mixture of          and          .

Example distillation algorithm

ρ(0, 0, 1) = |0〉〈0|

ρ(1, 0, 0) = |+〉〈+|

ρ( 1√
2
, 0, 1√

2
) = |H〉〈H |

ρ0 = ρ(x, 0, z)

ρ0 |0〉〈0| |+〉〈+|
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• Above P/D algorithm (+ more tricks) shows distillable the region beyond: 

Single-qubit state-of-the-art
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• Running P then D is equivalent to taking four copies of ρ, and postselecting 
on lying in the codespace of the four-qubit code.  

• Bravyi & Kitaev used the five-qubit code to cut off 

(In fact, can further round the middle corners off slightly.)

Single-qubit state-of-the-art
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• Distillation is tight in H direction ({x=z,y=0} axis)

• Open: Can we do better along {x=y=z} axis?

• Better distillation procedure is equiv. to 
  existence of stabilizer codes with certain 
  weight distributions. 

• Indeed, w.l.o.g., all measurements may be 
  assumed to have postselected outcomes 

• And no extra working space is required.  ☐
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• Fault-tolerance schemes based on concatenated coding

• Implement FT stabilizer operations at coding level k in terms of FT 
stabilizer operations at level k-1, … 

• But this is insufficient for universality!

• Shor implemented Toffolik [via preparation of level-k-
encoded                                                  ] in terms of Toffolik-1 and 
stabilizersk-1, …

• Alternatively, we can teleport a noisy ancilla state into the level-k encoding 
directly, then purify it with stabilizersk.

➡ Stabilizersk and ancilla0 give Toffolik

Application: FT threshold lower bounds
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• We can teleport a noisy ancilla state into the level-k encoding directly, then 
purify it with stabilizersk.

➡ Stabilizersk and ancilla0 give Toffolik

• Advantages:

• Magic states distillation tolerates high noise ⇒ the bottleneck is in the 

threshold for stabilizer operations.  (Reduction)

• Ease of analysis & simulation for discrete Pauli error models

Clifford!

Application: FT threshold lower bounds

Pauli errors pass through Cliffords: But not past Toffolis:
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• We can teleport a noisy ancilla state into the level-k encoding directly, then 
purify it with stabilizersk.

• Results using this technique:

• Knill ‘05: Estimated >3% depolarizing noise tolerable using an error-
detection-based fault-tolerance scheme.

• R. ‘06:     Proved 0.1% noise tolerable for similar scheme, or 1.1% if noise 
model is known.

Application: FT threshold lower bounds



• Recall P/D algorithm: w/prob. 1/2, apply P then D, w/prob. 1/2, D then P.

• But in postselection/error-detection-based FT schemes, stabilizer 
operations can’t be applied at random!  (After conditioning on acceptance, 
coin flip will not be fair.) 

• Require stability to perturbations (noise on ancilla state varies).

Practical considerations for threshold lower bounds

Theorem. There exists an ε > 0 such that perfect CNOT, H, preparation of |0〉
and measurement in the |0〉/|1〉 basis, with adaptive classical control, together
with the ability to prepare (unknown) states ρi each with fidelity ≥ 1 − ε with
ρ( 1√

3
(1, 1, 1)), allows efficient simulation of universal quantum computation.

Explicitly, with (xi, yi, zi) the Pauli coordinates of ρi, |H〉 can be efficiently
distilled provided maxi max{| 1√

3
− xi|, | 1√

3
− yi|, | 1√

3
− zi|} ≤ 0.0527.



• We can teleport a noisy ancilla state into the level-k encoding directly, then purify it with 
stabilizersk.

• Results using this technique
• [Knill ‘05]: Estimated >3% depolarizing noise tolerable using an error-detection-

based fault-tolerance scheme.
• [R. FOCS’06]: Proved 0.1% noise tolerable for similar scheme, or 1.1% if noise 

model is known.

• Conclusion: Lower bounds on distillable region (possibly in a more 
restricted model) help give lower bounds for fault-tolerance threshold.

• Open problems: Better stable distillation lower bounds, stable H distillation?

Application: FT threshold lower bounds



• Claim: Given perfect stabilizer op’s, 

E gives universality  iff                       is distillable to

• Let E be noisy U.  Upper bounds on distillability of                  therefore 
upper-bound noise on U before universality is lost. 

• Distillation upper bounds: If ρ is a mixture of stabilizer states, it is not 
distillable to a non-stabilizer state.  

Application 2: FT threshold upper bounds

|H〉

(I ⊗ E)|Ψ〉

(I ⊗ E)|Ψ〉

(However, magic states distillation is a broader problem; not all ancillas arise from J. isom. on noisy E).  
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• Let E be noisy U.  Upper bounds on distillability of                  therefore 
upper-bound noise on U before universality is lost. 

• Approach of [Buhrman/Cleve/Laurent/Linden/Schrijver/Unger QIP 2006]: 

Application 2: FT threshold upper bounds

1. Compute polyhedron convex hull of two-
qubit stabilizer states.
2. Compute unitary U which accepts most 
noise before                   is a mixture of 
stabilizers.

Answer: π/8 gate takes most, 45% 
depolarizing, so 45% upper-bounds FT 
threshold.  
By P/D algorithm on                   , this is 
tight.

Note: Sufficient to compute convex hull of stabilizer states arising from J. isom.

(I ⊗ E)|Ψ〉

(I ⊗ E)|Ψ〉

(I ⊗ E)|Ψ〉



• BCLLSU ‘06:
• Compute polyhedron convex hull 

  of two-qubit stabilizer states
• Compute one-qubit U which takes 

  most noise before J. isom. gives 
  mixture of stabilizers.

• Answer: π/8 gate takes most, 45% 
  depolarizing noise

• Open question 1: Better bounds 
  assuming noisy stabilizer op’s  

• 45% is tight with perfect stabilizer 
  op’s, but too conservative o.w.

• First U applied must be to noisy stabilizer state.  Using that state requires 
more noisy stabilizer op’s.     Get stabilizer mixture with less noise on U.

• By how much can this improve FT threshold upper bound?

• Open question 2: Are there better upper bounds — i.e., do non-stabilizer 
states which are not distillable exist?

Application 2: FT threshold upper bounds
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• Can we prove better upper bounds on distillability (and FT threshold), 
beyond the Gottesman-Knill limit?

• One possible approach: Reduce to single-qubit case.

• Theorem: An n-qubit pure state      is distillable         one      copy can be 
reduced to a single-qubit distillable (pure) state.  (Every n-qubit non-
stabilizer pure state is distillable.)

Better distillation upper bounds?

|ψ〉 ⇔ |ψ〉



• Can we prove better upper bounds on distillability (and FT threshold), 
beyond the Gottesman-Knill limit?

• One possible approach: Reduce to single-qubit case.

• Theorem: An n-qubit pure state      is distillable         one      copy can be 
reduced to a single-qubit distillable (pure) state.

• Same holds for all previously proposed multi-qubit mixed ancilla states, 
either arising from the Jamiolkowski isomorphism [VHP ‘05, BCLLSU 
‘06], or Dennis’s

I.e., reductions to nonstabilizer single-qubit states exist for all noise 
values up to until the states become a mixture of stabilizer states

• Could this hold generally?

Better distillation upper bounds?

⇔|ψ〉 |ψ〉
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• One possible approach: Reduce to single-qubit case.

• Theorem: An n-qubit pure state      is distillable         one      copy can be 
reduced to a single-qubit distillable (pure) state.

• Could this hold generally?

• No.  There exist two-qubit states which are not mixtures of stabilizer 
states, but for which every 2-to-1-qubit stabilizer reduction outputs a 
stabilizer state mixture.

• In fact, there are eight inequivalent faces of the polyhedron, for only one of 
them do 2-to-1-qubit stabilizer reductions exist.

• Among the seven other classes of examples, this has the most structure 
(e.g., nonzero Pauli coordinates all anticommute), making it perhaps the 
most promising for proving undistillable.

An interesting two-qubit state
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• Magic states distillation has tight connections to fault-tolerance.  

• Distillation upper bounds give FT upper bounds.

• Distillation lower bounds help FT lower bounds.

• Open problems: Better bounds

• Better stable distillation procedures for FT.

• Better understanding of multi-qubit case.  In particular, can 

be distilled?  What are the two-qubit “magic” states analogous to H 
and T?

• Details: quant-ph/0608085 and Ch. 6 of quant-ph/0612004

Conclusion
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