

Ben W. Reichardt Caltech

ancilla-assisted,

 What is the power of classically-controlled stabilizer operations

noisy ancilla-assisted,

• What is the power of classically-controlled stabilizer operations

noisy ancilla-assisted,

 What is the power of classically-controlled stabilizer operations

Quantum information

- noisy ancilla-assisted,

 What is the power of classically-controlled stabilizer operations

- Quantum information
- Applications to fault tolerance:
 - FT threshold upper bounds based on Gottesman-Knill Thm
 - E.g., 15% general, 30% dephasing noise on π/8 gate [Virmani/Huelga/Plenio '05],
 - 45% depolarizing noise [Buhrman/Cleve/Laurent/Linden/Schrijver/Unger QIP 2006]
 - FT threshold lower bounds
 - E.g., estimated 3% depolarizing noise, using error detection [Knill '05],
 - proven 0.1% depolarizing noise for error-detection-based scheme [R'06]

Stabilizer operations

• Stabilizer operations = Clifford group unitaries (e.g., CNOT, H, ...), Pauli operator measurement and eigenstate preparation.

• Stabilizer states = states preparable with stabilizer operations, or mixtures thereof.

• Remarks:

- For today, stabilizer operations are perfect, not faulty.
- Gottesman-Knill theorem efficiently simulates classically-controlled stabilizer operations.

 Shor '97: classically-controlled stabilizer operations together with repeated preparation of

$$\frac{1}{2}(|000\rangle + |010\rangle + |100\rangle + |111\rangle)$$

gives quantum universality. (Generalized by Gottesman, Chuang '99.)

 Shor '97: classically-controlled stabilizer operations together with repeated preparation of

$$\frac{1}{2}(|000\rangle + |010\rangle + |100\rangle + |111\rangle)$$

gives quantum universality. (Generalized by Gottesman, Chuang '99.)

• Knill/Laflamme/Zurek '97: Reduced universality to preparation of

$$|H\rangle = |\pi/8\rangle = \cos\frac{\pi}{8}|0\rangle + \sin\frac{\pi}{8}|1\rangle$$

and gave a purification network for noisy ancilla states.

- Shor '97: classically-controlled stabilizer operations and repeated preparation of $\frac{1}{2}$ $(|000\rangle+|010\rangle+|100\rangle+|111\rangle)$ gives universality.
- Knill/Laflamme/Zurek '97: Reduced to $|H\rangle = |\pi/8\rangle$, gave a purification procedure for noisy ancilla states.
- ullet Dennis '01: Reduced to preparation of $\,rac{1}{2}\,(|00
 angle + |01
 angle + |10
 angle)$
 - New idea: Considered recursive purification/distillation of poisy ancilla states, showed that up to ~7% $|11\rangle$ noise can be tolerated

(In fact, up to exactly 25% of this noise can be tolerated, or exactly 40% depolarizing noise — and both numbers are tight.)

- Shor '97: classically-controlled stabilizer operations and repeated preparation of $\frac{1}{2}\left(|000\rangle+|010\rangle+|100\rangle+|111\rangle\right)$ gives universality.
- Knill/Laflamme/Zurek '97: Reduced to $|H\rangle = |\pi/8\rangle$, gave a purification procedure for noisy ancilla states.
- ullet Dennis '01: Recursive purification of $rac{1}{2}\left(|00
 angle+|01
 angle+|10
 angle
 ight)$

★ Bravyi/Kitaev '05: Formalized general problem, introduced recursive purification based on codes, and gave new purification protocol.

Example: Parity checks

• Flip a coin with bias ϵ . To amplify the bias to $\sim 2\epsilon$, flip two coins and condition on their outcomes being the same.

$$\bullet \begin{pmatrix} \frac{1}{2} + \epsilon & 0 \\ 0 & \frac{1}{2} - \epsilon \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} + \frac{2\epsilon}{1 + 4\epsilon^2} & 0 \\ 0 & \frac{1}{2} - \frac{2\epsilon}{1 + 4\epsilon^2} \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = |0\rangle\langle 0|$$

$$\rho(x,y,z) = \tfrac{1}{2}(I+xX+yY+zZ) = \tfrac{1}{2}\left(\begin{smallmatrix} 1+z & x-iy \\ x+iy & 1-z \end{smallmatrix} \right)$$
 provided z>0.

• Similarly, running parity checks in the dual basis will converge to $\rho(1,0,0)=|+\rangle\langle+|$ provided x>0.

Example distillation algorithm

- $\sigma \longrightarrow \mathbf{P}(\sigma)$ Parity checks converge to $\rho(0,0,1)=|0\rangle\!\langle 0|$ if z>0. $\sigma \longrightarrow \langle 0|$
- Dual p. checks converge to $\rho(1,0,0)=|+\rangle\!\langle +|$ if x>0. σ $\xrightarrow{\sigma}$ $C(\sigma)$
- Repeat:
 - With probability 1/2, apply **P** then **D**
 - With probability 1/2, apply **D** then **P**

- Converges close to $\rho(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})=|H\rangle\!\langle H|$ Hadamard eigenstate provided $\rho_0=\rho(x,0,z)$ with x+z>1.
- Tight! If x+z=I, then ρ_0 is a mixture of $|0\rangle\langle 0|$ and $|+\rangle\langle +|$.

Single-qubit state-of-the-art

• Above **P/D** algorithm (+ more tricks) shows distillable the region beyond:

Single-qubit state-of-the-art

- Running **P** then **D** is equivalent to taking four copies of ρ , and postselecting on lying in the codespace of the four-qubit code.
- Bravyi & Kitaev used the five-qubit code to cut off $x+y+z>\frac{3}{\sqrt{7}}$

(In fact, can further round the middle corners off slightly.)

Single-qubit state-of-the-art

Distillation is tight in H direction ({x=z,y=0} axis)

• Open: Can we do better along $\{x=y=z\}$ axis?

 $|H\rangle = |\frac{\pi}{8}\rangle$ $(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$

- Better distillation procedure is equiv. to existence of stabilizer codes with certain weight distributions.
 - Indeed, w.l.o.g., all measurements may be assumed to have postselected outcomes
 - ullet And no extra working space is required. \Box

- Fault-tolerance schemes based on concatenated coding
 - Implement FT stabilizer operations at coding level k in terms of FT stabilizer operations at level k-1, ...
 - But this is insufficient for universality!
- Shor implemented Toffoli_k [via preparation of level-k-encoded $\frac{1}{2} (|000\rangle + |010\rangle + |100\rangle + |111\rangle)$] in terms of Toffoli_{k-1} and stabilizers_{k-1}, ...
- Alternatively, we can *teleport* a noisy ancilla state into the level-k encoding directly, then purify it with stabilizers_k.
 - \rightarrow Stabilizers_k and ancilla₀ give Toffoli_k

- We can *teleport* a noisy ancilla state into the level-k encoding directly, then purify it with stabilizers_k.
 - → Stabilizers_k and ancilla₀ give Toffoli_k
- Advantages:
 - Magic states distillation tolerates high noise ⇒ the bottleneck is in the threshold for stabilizer operations. (Reduction)
 - Ease of analysis & simulation for discrete Pauli error models

Pauli errors pass through Cliffords:

$$\frac{X}{X} = \frac{X}{X}$$

But not past Toffolis:

- We can teleport a noisy ancilla state into the level-k encoding directly, then purify it with stabilizers_k.
- Results using this technique:
 - Knill '05: Estimated >3% depolarizing noise tolerable using an errordetection-based fault-tolerance scheme.
 - R.'06: Proved 0.1% noise tolerable for similar scheme, or 1.1% if noise model is known.

Practical considerations for threshold lower bounds

- Recall **P/D** algorithm: w/prob. I/2, apply **P** then **D**, w/prob. I/2, **D** then **P**.
- But in postselection/error-detection-based FT schemes, stabilizer operations can't be applied at random! (After conditioning on acceptance, coin flip will not be fair.)
- Require stability to perturbations (noise on ancilla state varies).

Theorem. There exists an $\epsilon > 0$ such that perfect CNOT, H, preparation of $|0\rangle$ and measurement in the $|0\rangle/|1\rangle$ basis, with adaptive classical control, together with the ability to prepare (unknown) states ρ_i each with fidelity $\geq 1 - \epsilon$ with $\rho(\frac{1}{\sqrt{3}}(1,1,1))$, allows efficient simulation of universal quantum computation.

Explicitly, with (x_i, y_i, z_i) the Pauli coordinates of ρ_i , $|H\rangle$ can be efficiently distilled provided $\max_i \max\{|\frac{1}{\sqrt{3}} - x_i|, |\frac{1}{\sqrt{3}} - y_i|, |\frac{1}{\sqrt{3}} - z_i|\} \le 0.0527$.

- We can *teleport* a noisy ancilla state into the level-k encoding directly, then purify it with stabilizers_k.
- Results using this technique
 - [Knill '05]: Estimated >3% depolarizing noise tolerable using an error-detection-based fault-tolerance scheme.
 - [R. FOCS'06]: Proved 0.1% noise tolerable for similar scheme, or 1.1% if noise model is known.
- Conclusion: Lower bounds on distillable region (possibly in a more restricted model) help give lower bounds for fault-tolerance threshold.
- Open problems: Better stable distillation lower bounds, stable H distillation?

Application 2: FT threshold upper bounds

• Claim: Given perfect stabilizer op's,

 ${\cal E}$ gives universality iff $(I\otimes {\cal E})|\Psi
angle$ is distillable to |H
angle

• Let $\mathcal E$ be noisy U. Upper bounds on distillability of $(I\otimes \mathcal E)|\Psi\rangle$ therefore upper-bound noise on U before universality is lost.

• Distillation upper bounds: If ρ is a mixture of stabilizer states, it is not distillable to a non-stabilizer state.

(However, magic states distillation is a broader problem; not all ancillas arise from J. isom. on noisy \mathcal{E}).

Application 2: FT threshold upper bounds

- Let $\mathcal E$ be noisy U. Upper bounds on distillability of $(I\otimes \mathcal E)|\Psi\rangle$ therefore upper-bound noise on U before universality is lost.
- Approach of [Buhrman/Cleve/Laurent/Linden/Schrijver/Unger QIP 2006]:

- I. Compute polyhedron convex hull of twoqubit stabilizer states.
- 2. Compute unitary U which accepts most noise before $(I\otimes\mathcal{E})|\Psi\rangle$ is a mixture of stabilizers.

Answer: π/8 gate takes most, 45% depolarizing, so 45% upper-bounds FT threshold.

By **P/D** algorithm on $(I\otimes \mathcal{E})|\Psi\rangle$, this is tight.

Note: Sufficient to compute convex hull of stabilizer states arising from J. isom.

Application 2: FT threshold upper bounds

- BCLLSU '06:
 - Compute polyhedron convex hull of two-qubit stabilizer states
 - Compute one-qubit U which takes most noise before J. isom. gives mixture of stabilizers.
 - Answer: π/8 gate takes most, 45% depolarizing noise
- Open question 1: Better bounds assuming noisy stabilizer op's
 - 45% is tight with perfect stabilizer op's, but too conservative o.w.

- First U applied must be to noisy stabilizer state. Using that state requires more noisy stabilizer op's. . . . Get stabilizer mixture with less noise on U.
- By how much can this improve FT threshold upper bound?
- Open question 2: Are there better upper bounds i.e., do non-stabilizer states which are not distillable exist?

Better distillation upper bounds?

- Can we prove better upper bounds on distillability (and FT threshold), beyond the Gottesman-Knill limit?
- One possible approach: Reduce to single-qubit case.
 - Theorem: An n-qubit pure state $|\psi\rangle$ is distillable \iff one $|\psi\rangle$ copy can be reduced to a single-qubit distillable (pure) state. (Every n-qubit non-stabilizer pure state is distillable.)

Better distillation upper bounds?

- Can we prove better upper bounds on distillability (and FT threshold), beyond the Gottesman-Knill limit?
- One possible approach: Reduce to single-qubit case.
 - Theorem: An n-qubit pure state $|\psi\rangle$ is distillable \iff one $|\psi\rangle$ copy can be reduced to a single-qubit distillable (pure) state.
 - Same holds for all previously proposed multi-qubit mixed ancilla states, either arising from the Jamiolkowski isomorphism [VHP '05, BCLLSU '06], or Dennis's $\frac{1}{2}\left(|00\rangle+|01\rangle+|10\rangle\right)$

I.e., reductions to nonstabilizer single-qubit states exist for all noise values up to until the states become a mixture of stabilizer states

Could this hold generally?

An interesting two-qubit state

- One possible approach: Reduce to single-qubit case.
 - Theorem: An n-qubit pure state $|\psi\rangle$ is distillable \iff one $|\psi\rangle$ copy can be reduced to a single-qubit distillable (pure) state.
 - Could this hold generally?
- **No**. There exist two-qubit states which are not mixtures of stabilizer states, but for which every 2-to-I-qubit stabilizer reduction outputs a stabilizer state mixture.

$$\frac{1}{4}II + \frac{1}{12}(IY + IZ - XX + YX + ZX)$$

- In fact, there are eight inequivalent faces of the polyhedron, for only one of them do 2-to-I-qubit stabilizer reductions exist.
- Among the seven other classes of examples, this has the most structure (e.g., nonzero Pauli coordinates all anticommute), making it perhaps the most promising for proving undistillable.

Conclusion

- Magic states distillation has tight connections to fault-tolerance.
 - Distillation upper bounds give FT upper bounds.
 - Distillation lower bounds help FT lower bounds.
- Open problems: Better bounds
 - Better stable distillation procedures for FT.
 - Better understanding of multi-qubit case. In particular, can

$$\frac{1}{4}II + \frac{1}{12}\left(IY + IZ - XX + YX + ZX\right)$$

be distilled? What are the two-qubit "magic" states analogous to H and T?

• Details: quant-ph/0608085 and Ch. 6 of quant-ph/0612004

Blank slide