= =2

Ben WV. Reichardt
Caltech



Magic states distillation problem:

ancilla-assisted,
® What is the power of classically-controlled
stabilizer operations

“w

(ancilla of constant size)



Magic states distillation problem:

noisy oncilla-assisted,

® What is the power of classically-controlled
stabilizer operations

@



Magic states distillation problem:

noisy oncilla-assisted,

® What is the power of classically-controlled
stabilizer operations

® Quantum information

Laurlt tolerance




Magic states distillation problem:

noisy oncilla-assisted, 7
®

® What is the power of classically-controlled
stabilizer operations

® Quantum information
e Applications to fault tolerance:

® FT threshold upper bounds based on Gottesman-Knill Thm
® E.g., 15% general, 30% dephasing noise on T1/8 gate [Virmani/Huelga/Plenio ‘05],

® 45% depolarizing noise [Buhrman/Cleve/Laurent/Linden/Schrijver/Unger QIP 2006]

® FT threshold lower bounds
® E.g., estimated 3% depolarizing noise, using error detection [Knill ‘05],

® proven 0.1% depolarizing noise for error-detection-based scheme [R’06]



Stabilizer operations

Stabilizer operations = Clifford group unitaries (e.g., CNOT, H, ...), Pauli
operator measurement and eigenstate preparation.

Stabilizer states = states preparable with stabilizer operations, or mixtures
thereof.

Remarks:
® For today, stabilizer operations are perfect, not faulty.

® Gottesman-Knill theorem efficiently simulates classically-controlled
stabilizer operations.



Ancilla-assisted stabilizer operations

® Shor ‘97: classically-controlled stabilizer operations together with repeated
preparation of

1 (1000) + 010) + [100) + [111))

gives quantum universality. (Generalized by Gottesman, Chuang ‘99.)




Ancilla-assisted stabilizer operations

® Shor ‘97: classically-controlled stabilizer operations together with repeated
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gives quantum universality. (Generalized by Gottesman, Chuang ‘99.)

e Knill/Laflamme/Zurek ‘97: Reduced universality to preparation of

|H) = |m/8) = cos 5|0) + sin 5 |1)

and gave a purification network for noisy ancilla states.



Ancilla-assisted stabilizer operations

Shor ‘97: cIassiczlllly-controIIed stabilizer operations and repeated
preparation of 5 (|000) 4 [010) + ]1005—% 1111)) gives universality.

Knill/Laflamme/Zurek ‘97: Reduced to |H) = |7/8), gave a purification
procedure for noisy ancilla states.

Dennis ‘01: Reduced to preparation of % (‘OO> + ‘01> -+ ‘10>)

® New idea: Considered recursive purification/distillation of noisy ancilla
states, showed that up to ~7% |11) noise can be tolerated

(In fact, up to exactly 25% of this noise can be tolerated, or exactly 40% depolarizing noise —
and both numbers are tight.)



Ancilla-assisted stabilizer operations

e Shor ‘97: cIassiczlllly-controIIed stabilizer operations and repeated
preparation of 5 (|000) 4 [010) + ]1005—% 1111)) gives universality.

e Knill/Laflamme/Zurek ‘97: Reduced to | H) = |7/8), gave a purification
procedure for noisy ancilla states.

e Dennis ‘01: Recursive purification of  (|00) + |01) + |10))

% Bravyi/Kitaev ‘05: Formalized general problem, introduced recursive
purification based on codes, and gave new purification protocol.



Example: Parity checks

® Flip a coin with bias €. To amplify the bias to ~2¢, flip two coins and
condition on their outcomes being the same.

1 1 2€

ste 0\ _ [2tTiae O (0 2
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o p(z,y,2)=5(I+zX +yY +22) =3 (xlify xl_—if)
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provided z>0.

® Similarly, running parity checks in the dual basis will converge
to p(1,0,0) = |+)+| provided x>0.



Example distillation algorithm
o —e— P(0)

Parity checks converge to p(0,0,1) = |0)X0| if z>0. o —B— (0]
Dual p. checks converge top(1,0,0) = |+)X+| if x>0. ¢ =P~ D(o)

o —e— (+]

Repeat: o —e—@ DoP(o)
e With probability 1/2,apply P then D o —P (0]
e With probability 1/2,apply D then P 7 —%—*— (|

o =D (0]

Converges close to p(\%, 0, \%) = | H )} H| Hadamard eigenstate

provided po = p(z, 0, z) with x+z>1.

Tight! If x+z=1, then pg is a mixture of |0)(0| and |+ )(+|.



Single-qubit state-of-the-art

e Above P/D algorithm (+ more tricks) shows distillable the region beyond:




Single-qubit state-of-the-art

® Running P then D is equivalent to taking four copies of p, and postselecting
on lying in the codespace of the four-qubit code.

® Bravyi & Kitaev used the five-qubit code to cut off * +y + 2 > \%

(In fact, can further round the middle corners off slightly.)



Single-qubit state-of-the-art

e Distillation is tight in H direction ({x=z,y=0} axis)

e Open: Can we do better along {x=y=z} axis!? :

m=-15 FPN
1 1
(Evovﬁ) A //\ ..

® Better distillation procedure is equiv. to
existence of stabilizer codes with certain ‘“

weight distributions.

® |[ndeed,w.l.0.g., all measurements may be
assumed to have postselected outcomes

® And no extra working space is required. []



Application: FT threshold lower bounds

e Fault-tolerance schemes based on concatenated coding

® I[mplement FT stabilizer operations at coding level k in terms of FT
stabilizer operations at level k-1, ...

e But this is insufficient for universality!

® Shor implemented Toffolik [via preparation of level-k-
encoded 1 (|000) 4 [010) + |100) + |111))] in terms of Toffolik.i and

stabilizersy.i, ...

e Alternatively, we can teleport a noisy ancilla state into the level-k encoding
directly, then purify it with stabilizersy.

= Stabilizersk and ancillao give Toffolii



Application: FT threshold lower bounds

® We can teleport a noisy ancilla state into the level-k encoding directly, then
purify it with stabilizersx.

= Stabilizersk and ancillap give Toffoli

e Advantages:
® Magic states distillation tolerates high noise = the bottleneck is in the
threshold for stabilizer operations. (Reduction)

® Ease of analysis & simulation for discrete Pauli error models

Pauli errors pass through Cliffords: But not past Toffolis:
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Application: FT threshold lower bounds

We can teleport a noisy ancilla state into the level-k encoding directly, then
purify it with stabilizersx.

Results using this technique:

e Knill ‘05: Estimated >3% depolarizing noise tolerable using an error-
detection-based fault-tolerance scheme.

e R.‘O6: Proved 0.1% noise tolerable for similar scheme, or |.1% if noise
model is known.



Practical considerations for threshold lower bounds

e Recall P/D algorithm: w/prob. 1/2,apply P then D, w/prob. 1/2, D then P.

® But in postselection/error-detection-based FT schemes, stabilizer
operations can’t be applied at random! (After conditioning on acceptance,
coin flip will not be fair.)

® Require stability to perturbations (noise on ancilla state varies).

Theorem. There exists an € > 0 such that perfect CNOT, H, preparation of |0)
and measurement in the |0)/|1) basis, with adaptive classical control, together
with the ability to prepare (unknown) states p; each with fidelity > 1 — € with
p(%(l, 1,1)), allows efficient simulation of universal quantum computation.

Explicitly, with (x;,v;, 2;) the Pauli coordinates of p;, |H) can be efficiently
distilled provided max; max{|\/i§ — x|, \% — i, \\/Lg — zi|} <0.0527.



Application: FT threshold lower bounds

We can teleport a noisy ancilla state into the level-k encoding directly, then purify it with
stabilizersk.
Results using this technique

® [Knill ‘05]: Estimated >3% depolarizing noise tolerable using an error-detection-
based fault-tolerance scheme.

e [R.FOCS’06]: Proved 0.1% noise tolerable for similar scheme, or |.1% if noise
model is known.

Conclusion: Lower bounds on distillable region (possibly in a more
restricted model) help give lower bounds for fault-tolerance threshold.

Open problems: Better stable distillation lower bounds, stable H distillation?



Application 2: FT threshold upper bounds

e Claim: Given perfect stabilizer op’s,

€ gives universality iff (I ® &)|V) is distillable to |H)

e Let €be noisy U. Upper bounds on distillability of (I ® £)|V) therefore
upper-bound noise on U before universality is lost.

® Distillation upper bounds: If p is a mixture of stabilizer states, it is not
distillable to a non-stabilizer state.

(However, magic states distillation is a broader problem; not all ancillas arise from J.isom. on noisy €&).



Application 2: FT threshold upper bounds

e Let € be noisy U. Upper bounds on distillability of (I ® £)|V) therefore
upper-bound noise on U before universality is lost.

e Approach of [Buhrman/Cleve/Laurent/Linden/Schrijver/Unger QIP 2006]:

1‘0> |. Compute polyhedron convex hull of two-
qubit stabilizer states.
2. Compute unitary U which accepts most
noise before (I ® £)|V) is a mixture of

stabilizers.
=)
Y4, | Answer: T1/8 gate takes most, 45%
v\ depolarizing, so 45% upper-bounds FT
Sy Y+ threshold.
+) By P/D algorithm on (I ® £)|W), this is
-- tight.

Note: Sufficient to compute convex hull of stabilizer states arising from |. isom.



Application 2: FT threshold upper bounds

BCLLSU ‘0é: 0.5

® Compute polyhedron convex hull 45%
of two-qubit stabilizer states 0.4}

® Compute one-qubit U which takes
most noise before |. isom. gives
mixture of stabilizers.

® Answer:T1/8 gate takes most, 45%
depolarizing noise

< (32%,32%)

o
w

U failure rate
(e»]
g

Open question |: Better bounds
assuming noisy stabilizer op’s

o
L)
[

e 45% is tight with perfect stabilizer I T R W
op’s, but too conservative o.w. CNOT failure rate

e First U applied must be to noisy stabilizer state. Using that state requires
more noisy stabilizer op’s. .". Get stabilizer mixture with less noise on U.

® By how much can this improve FT threshold upper bound?

Open question 2:Are there better upper bounds — i.e., do non-stabilizer
states which are not distillable exist?



Better distillation upper bounds?

e Can we prove better upper bounds on distillability (and FT threshold),
beyond the Gottesman-Knill limit?

® One possible approach: Reduce to single-qubit case.

® Theorem:An n-qubit pure state %) is distillable < one [9) copy can be
reduced to a single-qubit distillable (pure) state. (Every n-qubit non-
stabilizer pure state is distillable.)



Better distillation upper bounds?

Can we prove better upper bounds on distillability (and FT threshold),
beyond the Gottesman-Knill limit?

One possible approach: Reduce to single-qubit case.

® Theorem:An n-qubit pure state %) is distillable < one [9) copy can be
reduced to a single-qubit distillable (pure) state.

® Same holds for all previously proposed multi-qubit mixed ancilla states,
either arising from the Jamiolkowski isomorphism [VHP ‘05, BCLLSU
‘06], or Dennis’s = (|00) + |01) + |10))

l.e., reductions to nonstabilizer single-qubit states exist for all noise
values up to until the states become a mixture of stabilizer states

e Could this hold generally?



An interesting two-qubit state

One possible approach: Reduce to single-qubit case.

e Theorem:An n-qubit pure state |¢) is distillable <= one |¥) copy can be
reduced to a single-qubit distillable (pure) state.

® Could this hold generally?

No. There exist two-qubit states which are not mixtures of stabilizer
states, but for which every 2-to-1-qubit stabilizer reduction outputs a
stabilizer state mixture.

M+ L (IY +1Z — XX + YX + ZX)

In fact, there are eight inequivalent faces of the polyhedron, for only one of
them do 2-to-|-qubit stabilizer reductions exist.

Among the seven other classes of examples, this has the most structure
(e.g., nonzero Pauli coordinates all anticommute), making it perhaps the
most promising for proving undistillable.



Conclusion

® Magic states distillation has tight connections to fault-tolerance.
e Distillation upper bounds give FT upper bounds.

e Distillation lower bounds help FT lower bounds.
e Open problems: Better bounds
e Better stable distillation procedures for FT.
® Better understanding of multi-qubit case. In particular, can

T+ & (IY +1Z — XX + YX + ZX)

be distilled? What are the two-qubit “magic” states analogous to H
and T?

® Details: quant-ph/0608085 and Ch. 6 of quant-ph/0612004
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