Interactive Authoring of Simulation-Ready Plants

Yili Zhao

Jernej Barbic

University of Southern California

frame 138

frame 307

Figure 1: Simulation of a peach tree with anatomically realistic geometry (Prunus Persica), with fracture. Peaches fall from the tree
swaying in the space-time Perlin wind. 299,707 triangles, 237 branches, 3,556 twigs, 18,536 leaves, 330 fruits, 2,950 reduced DOFs, 7

hierarchy levels, 5 msec of simulation per graphical frame.

Abstract

Physically based simulation can produce quality motion of plants,
but requires an authoring stage to convert plant “polygon soup”
triangle meshes to a format suitable for physically based simula-
tion. We give a system that can author complex simulation-ready
plants in a manner of minutes. Our system decomposes the plant
geometry, establishes a hierarchy, builds and connects simulation
meshes, and detects instances. It scales to anatomically realistic
geometry of adult plants, is robust to non-manifold input geometry,
gaps between branches or leaves, free-flying leaves not connected
to any branch, spurious geometry, and plant self-collisions in the in-
put configuration. We demonstrate the results using a FEM model
reduction simulator that can compute large-deformation dynamics
of complex plants at interactive rates, subject to user forces, grav-
ity or randomized wind. We also provide plant fracture (with pre-
specified patterns), inverse kinematics to easily pose plants, as well
as interactive design of plant material properties. We authored and
simulated over 100 plants from diverse climates and geographic re-
gions, including broadleaf (deciduous) trees and conifers, bushes
and flowers. Our largest simulations involve anatomically realistic
adult trees with hundreds of branches and over 100,000 leaves.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques, 1.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: botanical, authoring, interactive, large deformations,
model reduction, domain decomposition, FEM

Links: ©DL ZPDF @ WEB OVIDEO & CODE

1 Introduction

A large fraction of our world is covered by vegetation. Botanical
environments are both diverse and very common; therefore, they
are crucial for special effects, games and virtual reality applications.
Previous computer graphics research on plants has focused on plant
geometry creation and appearance (rendering), as well as efficient
simulation. Simulation of complex plants is challenging, however,
because plant meshes are typically designed for rendering, not sim-
ulation. In this system paper, we demonstrate how to robustly and
quickly pre-process complex plants in the presence of imperfec-
tions in the input geometry, for subsequent fast physically based
simulation. Because plants naturally decompose into their con-
stituent parts (branches, twigs, leaves, etc.), we focus on simulators
that employ domain decomposition. Such authoring of simulation-
ready plants augments and completes simulation, by making it easy
to apply simulation to general, complex plant models.

We give an efficient, systematic approach to convert anatomically
realistic “polygon soup” plant triangle meshes to a format suitable
for physically based simulation. In a manner of minutes and with
minimal user intervention, our system can pre-process virtually any
plant, which we then simulate in an efficient domain decomposi-
tion simulator, accelerated using model reduction [Barbi¢ and Zhao
2011]. Such a combination of authoring and fast simulation en-
ables us to produce quality large-deformation dynamics of complex
plants, under any given external forces, such as impulsive forces,
gravity or wind. Our authoring is robust to non-manifold input
geometry, gaps between branches or leaves, free-flying leaves not
connected to any branch, spurious geometry (“debris”) left in the
model, and plant self-collisions in the input configuration. We re-
move loops in the domain graph using a new user-assisted algo-
rithm to select a minimum spanning tree in a general undirected
graph. Our domain graph creation algorithm, instancing, and span-
ning tree selection procedure apply to any domain decomposition
plant simulation method, including those that do not employ model
reduction [Twigg and Kaci¢-Alesi¢ 2010].

Our system supports plants represented using triangle meshes and
alpha-masked billboards. Real-time fracture along the domain
boundaries is supported, enabling our plants to shed leaves or
drop fruits (Figure 1). We also present an approach to perform
physically-based inverse kinematics, enabling the user to adjust the


http://doi.acm.org/10.1145/2461912.2461961
http://portal.acm.org/ft_gateway.cfm?id=2461961&type=pdf
http://www.jernejbarbic.com/botanical
http://www.jernejbarbic.com/botanical
http://www.jernejbarbic.com/botanical

geometry of existing plants by dragging plant vertices. We simu-
lated over 100 plants from diverse climates and geographic regions,
including many broadleaf (deciduous) trees and conifers, bushes
and flowers. Our system can simulate both simple plants and plants
as complex as entire anatomically realistic adult trees with several
hundreds of branches and over 100,000 leaves (Figure 5).

2 Related Work

Botanical modeling has a long history in computer graphics and
we refer the reader to good survey work [Deussen and Lintermann
2005]. There are many strategies to create and edit plant geom-
etry [Prusinkiewicz 1986; Pirk et al. 2012; Longay et al. 2012].
User-assisted plant modeling [Lintermann and Deussen 1999] has
been demonstrated to scale and produce realistic models of complex
plants, as seen in the commercial Xfrog system [Xfrog 2009]. We
use Xfrog models extensively in our work, as well as models from
other sources, such as the SpeedTree [Interactive Data Visualization
1999] system, and generic online content providers [Turbosquid
2000]. Our method works with “triangle soup” input meshes and
is agnostic of the specific modeling approach.

Perhaps the simplest approach to animating plants is to drive the
deformations kinematically using a stochastic wind [Wong and
Datta 2004]. Animations can also be created using pre-recorded
motion graphs [James et al. 2007; Zhang et al. 2007], optionally
combined with stochastic motion [Zhang et al. 2008]. Physically
based simulation can provide dynamics, secondary motion and eas-
ier runtime control. A common approach is to model branches as
rigid rods connected with angular springs [Sakaguchi and Ohya
1999; Zhang et al. 2006; Weber 2008]. Simulations can be aug-
mented with a proper randomized wind model [Ota et al. 2004],
accelerated using level-of-detail techniques [Beaudoin and Keyser
2004], and stabilized using recursive fully implicit methods [Hadap
2006]. Flexible branches have been modeled using 1D linear Euler-
Bernoulli beams [Habel et al. 2009; Hu et al. 2012] or nonlinear
Kirchhoff rods [Bergou et al. 2008; Bertails 2009]. Plants con-
sisting of deformable branches and leaves can be simulated using
oriented particles [Miiller and Chentanez 2011], elastons [Martin
et al. 2010], and the three-dimensional solid Finite Element Method
(FEM) [Twigg and Kacié-Alesi¢ 2010; Lu et al. 2011]. Three-
dimensional FEM simulations can easily support volume preser-
vation and spatially-varying material properties. They also auto-
matically incorporate branch thickness (thicker branches are harder
to bend), and crooked undeformed branches. Our simulator builds
upon the three-dimensional solid FEM. It augments it with frame-
aware domain decomposition to support large deformations, modu-
larity, interactive design and fracture, and model reduction to in-
crease the speed of computation. We note, however, that much
of our pre-processing pipeline applies broadly to plant simulation:
loops in the input triangular geometry can be avoided, instances
detected, leaves connected and domain decomposition enabled.

Application of model reduction to linear systems are com-
mon [Pentland and Williams 1989], and offer several advantages
such as rapid simulation rates, as well as easy adjustments of the
simulated and rendered level of detail. In the context of plant sim-
ulation, Stam [1997] used a modal basis to compute noise in the
frequency domain, and Diener [2009] used a wind projection ba-
sis to increase computation speed. Low-dimensional (three of less)
linear modal simulations on individual, fully decoupled, branches
modeled as Euler-Bernoulli beams were presented in [Habel et al.
2009; Hu et al. 2012], as well as methods to tune the models to
match recorded real tree motion. These approaches produce qual-
ity high-frequency motion of trees, e.g., leaves and branches rapidly
fluttering in the wind, and are as such complementary to our nonlin-
ear model reduction simulator. Because they employ linear models,

Figure 2: Domain decomposition and model reduction: (a) un-
deformed triangle mesh, (b) domain simulation meshes with fixed
vertices shown in red, (c) domain graph, (d) deformed mesh, (e) de-
formed domain simulation meshes, with reduced deformation vec-
tors q; shown for each domain.

they cannot, however, support large deformation plant dynamics,
characteristic of non-wooden (herbaceous) plants or trees blowing
in strong winds. Research on how to quickly simulate plants under-
going large deformations, especially the ones with large structural
and geometrical complexity, appears very limited. In this paper,
we develop a robust system which allows us to quickly pre-process
many complex botanically accurate models and launch them in our
interactive simulation program.

Because plants typically consist of well-defined subparts with only
limited inter-part interaction, domain decomposition is a natu-
ral approach to tackling plant complexity. Twigg and Kaci¢-
Alesi¢ [2010] simulated deformable objects consisting of many
parts, including trees, by gluing them together using the Procrustes
transform. Their method simulates each deformable part in the full
space. Such simulations can be accelerated by orders of magnitude
using model reduction, which makes it possible to timestep com-
plex plants at interactive rates. Recently, the combination of domain
decomposition and model reduction has received significant atten-
tion in the literature [Barbi¢ and Zhao 2011; Kim and James 2011;
Yang et al. 2013]. Barbi¢ and Zhao [2011] employed gradients of
rotation matrices computed using polar decomposition, for struc-
tures without loops in the domain graph. Kim and James [2011]
efficiently simulated deformations of characters using inter-domain
spring forces. Recent work of [Yang et al. 2013] uses modes ob-
tained from unit displacements of interface vertices, and inertia
modes, combined with modal warping. We adopt [Barbi¢ and Zhao
2011] as our runtime simulation method because it does not require
a skeleton, pre-existing motion, or well-defined domain interfaces.
We augment it with fracture, inverse kinematics, frequency tuning,
and bottom-up meshing: unlike [Barbi¢ and Zhao 2011], a global
volumetric mesh is never constructed, as each domain is meshed
individually, enabling component re-use and modularity.

3 Background: Domain Decomposition and
Model Reduction

We now give key model reduction and domain decomposition con-
cepts necessary for our work. In domain decomposition, the object
whose deformations are to be simulated is divided into parts, called
domains (Figure 2, b). In the context of plant simulation, domains
are usually the plant logical parts, such as leaves, branches, petals
or fruits. The domains form a graph where two domains are con-
nected if they are neighbors. For example, the trunk is connected to
the branches emanating from the trunk, and a branch is connected
to the leaves growing from the branch (Figure 2, ¢). The idea of



domain decomposition is to timestep each domain separately, but
add proper coupling forces or some other mechanism to keep the
domains connected and properly affect each other’s motion. This
is especially beneficial when the object consists of many repetitive
parts (leaves, petals, twigs, fruits, etc.), enabling data re-use and
memory savings. For the vast majority of plants, domain graphs
are connected and free of cycles (graph-theoretical trees). Some al-
gorithms, such as the one adopted by our method [Barbi¢ and Zhao
2011], can exploit the tree property for faster computation.

Model reduction (see [Sifakis and Barbi¢ 2012] for a survey) is an
orthogonal technique to domain decomposition. Given a flexible
object (in our context, an individual domain), the key idea is to
substitute the high-dimensional dynamics where every vertex has
three degrees of freedom, with a projection to some representative,
low-dimensional space of vertex displacements. There are several
approaches to selecting the low-dimensional basis and efficiently
projecting the full-space dynamics to it. We use linear vibration
modes, modal derivatives and cubic polynomials for geometrically
nonlinear FEM deformable models [Barbi¢ and James 2005] be-
cause they can be computed automatically from the elastic material
properties (mass density, Young’s modulus, Poisson’s ratio), and do
not require any simulation snapshots.

Domain decomposition can be combined with model reduction.
Kim and James [2011] coupled domains with spring forces,
whereas Barbi¢ and Zhao [2011] couple them kinematically, essen-
tially employing the reduced coordinates of every domain as (gener-
alized) “joints” (Figure 2, d). We briefly restate their method here;
for more details, we refer the reader to [Barbi¢ and Zhao 2011].
The domain tree is first oriented by picking a root, then at every
timestep the method proceeds from root to the leaves, timestep-
ping the reduced dynamics of each domain under the internal elas-
tic forces, system forces, interface forces, and any given external
forces such as gravity, collisions or user forces. The computed de-
formations of a domain are employed to compute the new position
and orientation for all its child domains, by fitting undeformed in-
terface vertices to their deformed positions, using polar decompo-
sition (Figure 2, d). At the end of the timestep, all domains have
been assigned a new position, orientation, and local deformation of
its vertices. The method assumes that the interfaces between do-
mains are small, a condition which is typically satisfied with plants.
The coupling between the domains is approximated with two types
of forces. System forces model the effect that child domains un-
dergo system forces due to the acceleration of the parent (similar to
passengers in an accelerating car). In the context of tree simulation,
such forces produce natural secondary motion of smaller branches
and leaves due to the motion of their parent branches. Interface
forces model the effect that the motion of a domain is affected by
the mass of the subtrees attached to it; therefore, for example, the
main trunk vibrates more slowly due to the branches attached to it.
In [Barbi¢ and Zhao 2011], interface forces are approximated by
the assumption that the mass of attached subtrees is concentrated
at the location of the interface. Such an approximation improves
simulation speed and stability, as it leads to symmetric systems of
equations, but it also causes a frequency shift. We show that the
shifts can be corrected to match the lowest frequencies of full FEM
simulation, by scaling Young’s moduli for each domain (Section 7).

4 Plant Preprocessing

Given an input triangle mesh of a plant, we present an efficient
and easy to use user-assisted pipeline to organize the plant into
domains, create the domain hierarchy and simulation meshes, and
pre-process reduced models. Our initial attempt was to perform the
entire pre-process without a user, in a console application without a
GUI, but such an approach quickly proved to be impractical. All of

solid

wireframe

colliding
input meshes

branches twigs leaves

entire tree

Figure 3: Branches (F), twigs (R1) and leaves (R2). Branches

can simply “sink” into each other in the input geometry (right).

the steps of our pipeline except the model reduction pre-processing
in Step 10 apply generally to plant domain decomposition, and
could be used with other domain decomposition methods [Twigg
and Kacié-Alesi¢ 2010; Kim and James 2011]. Our procedure
starts with a triangle mesh of a plant. We make no assumptions
on mesh topology or connectivity and support arbitrary “triangle
soups” which may contain cracks, T-vertices or duplicated trian-
gles. Such plant models are very common in practice. The various
plant parts need not be properly connected to each other in terms
of sharing vertices; for example, it is sufficient if adjacent branches
simply collide with each other slightly at their common intersection
(see Figure 3, right). Our system supports “billboards”, i.e., texture-
mapped (usually simple) triangle meshes with transparency, com-
monly used to model leaves, fronds and smaller branches (twigs).
We now explain our pre-processing pipeline; each consecutive step
is described in a subsection below. Steps performed by the user are
marked as (U), whereas fully automated steps are marked as (A).
Table 1 analyzes the time needed for each of the steps.

4.1 (U) Organize input mesh into domains

Given a “polygon soup” mesh, the polygons must be grouped into
domains. Each of our domains is characterized by the user as one
of the three types: (i) F, (ii) R1 or (iii) R2 (Figure 3). Domains
F are flexible, and typically incorporate meshed, non-billboard 3D
geometry, e.g., the trunk, branches, or flowers. Domains of type
Rx are rigid, and are in practice often instanced. They are typically
used for fruits, billboard twigs, fronds, leaves, small decorative ge-
ometry or even unwanted geometry left in the model by artists (“de-
bris”; e.g., small unconnected triangles). We use two levels R1 and
R2 because in some plants, the artist intended billboard domains to
be parented to other billboard domains, e.g., conifer billboard nee-
dles attached to billboard twigs. If a single level R1 was employed,
some domains may be parented to flexible domains that are too far
away, which can cause neighboring domains to separate at runtime.
A typical example of the decomposition is to assign all branches
into F, twigs into R1 and leaves into R2 (Figure 3). The user is free
to deviate from such guidelines, however. In some of our examples,
leaves are modeled as flexible triangle meshes, and assigned to F.

Every triangle must be assigned into exactly one domain, and each
domain is assigned one of the F,R1,R2 types. We employ a user
interface similar to that in, say, Maya, where the user can select
triangles or domains, and show / hide / add / subtract/ delete / merge
them. Domains can be selected with the mouse and then tagged as
either F, R1 or R2. In some models, polygons are pre-grouped by
the artists into individual logical parts, e.g., each leaf is a separate
domain already in the input, in which case the domains must only
be selected, and their type identified. Often, however, the parts of
the same kind are grouped together, e.g., all leaves are initially in
one domain, and must therefore be separated into individual leaf
domains. Therefore, another operation that we support is to break
an existing domain into connected components, where two trian-
gles are considered connected if they share a vertex. We compute
the connected components using the union-find datastructure [Cor-




L —_

Figure 4: Instancing and anchors: (a) One-to-one texture map
with transparency. (b) User-selected anchor points (in purple).

®) b2 (b3) (bd)

rest deformed

Figure 5: Instancing: The 120,000 alpha-masked billboard leaves
of this Oregon white oak tree (Quercus Garryana, 2,360,868 trian-
gles) are replicated copies (instances), detected automatically from
the input triangle oak mesh (shown left). 871 branches, 1 sec of
simulation for one graphical frame. We note that previous methods
[Barbi¢ and Zhao 2011 ] generated positions of leaves procedurally.
To the best of our knowledge, this is the first fully mechanically sim-
ulated tree with realistic adult geometry anywhere in science.

men et al. 1990]. When breaking domains into components, the
user can choose to impose a rule that all triangles in the domain
may use at most one texture image; otherwise, the domain is bro-
ken further, into one domain for each texture image. Such a rule is
useful with instancing, but is rarely needed because most models al-
ready satisfy this requirement as is. Although we did not encounter
it in practice, the connected components may also be useful when
the input geometry is unorganized, such as each triangle initially
forming a separate domain.

4.2 (U) Instancing

Many plants consist of repeated parts. The instances are translated,
rotated, scaled and sometimes nonlinearly deformed copies of each
other, e.g., replicated leaves or flower petals. Instancing decreases
authoring time and runtime memory footprint, as each instance
needs to be preprocessed and stored only once. Furthermore, it
greatly aids with hierarchy creation, as the user needs to specify the
anchor points (described below) only once per instance. Complex
examples are too tedious to author without instancing. Our first at-
tempt to perform instancing used shape matching directly [Miiller
et al. 2005]. This worked on some plants, but not on others, be-
cause of scalings, nonlinear instance deformations, and occasional
lack of vertex correspondence. Instead, we automatically identify
instances using a combination of shape matching and texture map
analysis, as follows. We assume that the triangle mesh of each in-
stanceable domain is texture-mapped with a single image, with a
one-to-one texture map (Figure 4, a). In particular, vertices cannot
have different texture coordinates (u,v) if they appear in more than
one triangle, and triangles cannot “fold over” or cross each other in
the uv space. In our model databases, we did not encounter texture
maps that would not be one-to-one.

We first inspect the texture image and the number of vertices; do-
mains that do not match in both, are not instanced copies. For each
vertex i of the first domain, we then find the vertex j = P(i) of the

Example 1 2 3 4
dahlia 1614002 0
jasmine 29 114106 | 20
white pine || 36 | 3 7 |10
broadleaf 71101140

6 7 8 10 | total
27 | 0.01 | 045 | 141 | 228
63 | 0.09 | 1.13 | 124 | 255
60 | 3.50 | 17 | 170 | 311
269 | 1.14 | 3.3 | 136 | 431

W W W] Wl

Table 1: Timings for each pre-processing step, in seconds, for
four representative models (shown in Figure 10), including user
and computer time. Four users were involved in the experiments.
Timings for steps 9 and 11 are not shown to save space, but are
included in totals; they are less than 0.7 sec in all examples.

second domain whose texture coordinates are closest to those of
vertex i, by performing a nearest neighbor search in the uv space.
If the map P is not one-to-one and onto (a permutation), or the dis-
tance to the nearest neighbor is greater than £ = 10~3 for any ver-
tex, we deem the domains not instanced. Finally, we check that the
triangle mesh topology is same for both domains: if vertices i, j, k
form a triangle in the first domain, so must vertices P (i), P(j), P(k)
in the second domain, and vice-versa. If topology is the same, do-
mains are deemed instanced copies of each other. At first, we did
not seek the permutation P, but simply checked the uv distance be-
tween vertex i of the first and second domain. This approach did
not work well because modeling packages sometimes arbitrarily re-
order triangle mesh vertices before exporting them. Note that our
definition of instancing relies only on the uv space, and therefore
permits arbitrary (nonlinear) world-space object transformations.

All the domains that are instanced copies of one another are placed
into an instance set. A single domain is chosen as a representative
instance; we choose the one that appears first in the input mesh.
For each instance set, the user selects a world-coordinate “anchor
point” on the representative instance (see Figure 4, b), by clicking
with the mouse on the model. We then determine and store the
corresponding (u,v) coordinates. The anchor point will be used to
determine the instance transformation, and also in Step 7 to assign a
parent to each Rx domain. The anchor point should typically be se-
lected at the end of the botanical piece, e.g., on leaf’s stem (petiole),
next to the attachment point to a branch (see Figure 4, b). Some-
times, billboard domains are not designed to attach to anything,
but are free-floating in great numbers, e.g., clusters of needles on
a conifer tree (Figure 4, bl). In such cases, the user should select
the center of the billboard polygon. Next, for each instance from
an instance set, we determine the [inear transformation that best
aligns the vertices of the representative instance to this instance,
using shape matching [Miiller et al. 2005]. Optionally, the user can
force the linear transformation into a rotation, computed using polar
decomposition. It is often preferable to use linear transformations,
however, because the leaves are often scaled in size to add variety.
The instance transformation is stored to disk, and used at runtime to
properly transform the domain. Only a single mesh must be stored
for each instance set.

4.3 (A) Computing the F domain graph

Next, our system automatically builds the domain graph for the F
domains. The nodes of the graph are the F domains, and two nodes
are connected if the two triangle meshes intersect in the undeformed
configuration. We determine the graph edges using collision detec-
tion, accelerated by bounding volume hierarchies and spatial hash-
ing [Lin and Gottschalk 1998]. Because we only need to perform
collision detection once (on static shapes), the domain graph con-
struction only takes a few seconds at most, even for our most com-
plex examples. Initially, we attempted to use collision detection
on volumetric meshes (computed using voxelization) to create our



incorrect correct edge
cycle-breaking to break
3 graph edge the cycle
(2 3)
cycle

e £

Figure 6: Loop resolution: A: a 7-cycle. B: an example of a 3-
cycle where a computer may make a mistake and that requires user
intervention. Because both smaller branches collide with the big-
ger branch, computer initially suggests an incorrect loop-breaking
graph edge (center), whereas the correct edge is shown on the right.
C: the minimum spanning tree selection algorithm. (1): Initial min-
imum spanning tree (green) and redundant edges (red). The edge to
be resolved next is marked by “add”. (2): The loop. User decides
to remove the edge marked with “X”. (3): The minimum spanning
tree after deleting the edge. (4): The hierarchy after the remaining
two redundant edges were processed. D: Examples of loops in input
geometry: “Y”-bifurcation and flower petals.

hierarchy. Although such an approach avoided gaps between do-
mains, it created many spurious graph edges, which greatly com-
plicated the spanning tree selection in Step 6.

4.4 (U) Connecting the F domain graph

The graph computed in step 3 may not be connected. In practice,
we encountered such situations in about 25% of all models. Most
often, this occurs for one of two reasons: (1) there is a small gap
between two domains, often visually (nearly) invisible and unim-
portant for rendering, or (2) the domains are “debris’: small pieces
inadvertently left in the model by the artist, often invisible inside
branches. We let the user connect the graph as follows. We compute
the connected components using the union-find datastructure. The
user can then select arbitrary two domains in arbitrary components,
and connect them. At any time of this process, she can recompute
the graph and the connected components. In most cases, when the
graph was initially not connected, the total number of components
was less than 10. We encountered a few cases of “debris” with ap-
proximately 50 components, which we deleted one by one. When
visualizing the connected components, we sort them based on size.
At any moment, the user can simply delete the remaining compo-
nents, if their size is deemed insignificant.

4.5 (U) User selects the root domain

Plants in nature are rooted. Although most models come pre-
oriented so that the Y-axis is up, this is not guaranteed, so the user
has to specify the root domain (typically, stem or trunk). We pro-
vide the domain with the largest diameter as the initial suggestion.
We compute the diameter approximately, by first computing the do-
main centroid, followed by the tightest ball centered at the centroid.

4.6 (U) User-assisted resolution of loops

Although in principle the output of Step 4 should have no cycles
(a tree), this is rarely the case in practice. For example, an artist
may have accidentally left a branch colliding with another branch,
forming a cycle (see Figure 6, A). There are three very common
causes of cycles: collisions of non-neighboring branches in the in-
put (very common with complex trees), “Y-bifurcations” where a
branch splits into two branches and all three meshes collide with
each other, forming a 3-cycle, and petals on flowers (Figure 6,
D). We found cycles to be common in commercial plant model
libraries. They must be removed so that a tree hierarchy can be
computed. It is difficult to remove cycles automatically, e.g., the
small transverse branch in Figure 6 (magnified in A), may as well
be connected to either of the main branches. A human, however,
can look at the branch and recognize its intended direction.

Each edge in the domain graph is either correct or spurious, and
we rely on the user to classify it. For complex plants, the num-
ber of edges ranks in tens of thousands, and it is not practical for
the user to visit and classify every edge. Therefore, we designed
an algorithm for user-assisted removal of loops, which provably al-
ways removes exactly the spurious edges, and in practice greatly
decreases the number of edges that the user must classify. Our al-
gorithm applies generally to any problem where a minimum span-
ning tree avoiding the “bad” edges must be selected out of the many
minimum spanning trees of an undirected graph with cycles. It as-
sumes that we are given an undirected graph with n vertices and
n—1+k edges, k > 0 of which are spurious, but it is not known
which ones without asking the user to classify the edges. The goal
is to minimize the number of user classifications.

We first compute an initial candidate minimum spanning tree, using
a breadth-first traversal starting from the root domain. There are
exactly k edges which are not in the minimum spanning tree. They
form the set of redundant edges, and we prioritize them by their
breadth-first order (Figure 6, C1). Note that the redundant edges are
not necessarily spurious, and that the spurious edges may be in the
non-redundant set. We then ask the user to resolve the loop formed
by adding each redundant edge, one by one. For each redundant
edge, we add it to the current minimum spanning tree, and therefore
exactly one cycle appears in the resulting subgraph 8§ (Figure 6, C2).
At least one spurious edge must appear in this cycle; otherwise, the
domain graph has a genuine cycle, which we assume is not possible
with plants. The cycle is discovered by traversing the minimum
spanning tree from each of the two vertices of the redundant edge
towards the root of the tree, until a common ancestor is detected,
thereby detecting a cycle. The cycle is then visualized to the user,
by coloring the cycle domains in a golden color (as in Figure 6,
A). The user is then asked to break the cycle by removing exactly
one spurious edge. The user does so by traversing the cycle (as in
Figure 6, A; the two node domains that are the endpoints of the edge
are shown in red and pink), and selecting the edge to be removed.
After the edge removal, the working graph § is a tree again, and the
number of redundant edges has decreased by one (Figure 6, C3).
This process is repeated k times until the redundant set becomes
empty, i.e., the working graph S is a tree and all the redundant edges
were resolved. Because we repeated the process k times, each time
removing one spurious edge, there can be no more spurious edges in
8. We then orient § to form a tree hierarchy, starting from the root
and proceeding to the leaves (Figure 6, C4). Because redundant
edges are prioritized by their breadth-first traversal order, the user
resolves cycles closer to the root first.

In our plant database, virtually all plants initially had cycles in the
domain graph, and required user intervention. Most loops, however,
occur due to “Y” bifurcations, and can be resolved very quickly.
For small / moderate examples, these were often the only loops.



Figure 7: Voxel simulation meshes. Left: root domain. Middle,
Right: two representative domains. The meshes for the different
domains are completely independent and do not need to meet in a
common interface. Adjacent petals can thus be meshed indepen-
dently, even though they collide in the input triangle mesh (middle,
right). Fixed vertices are shown in red, and need not be vertices of
the parent volumetric mesh; some are even outside the parent mesh.

The vast majority of redundant edge sets that we have encountered
in our examples had less than 100 edges. A few large examples,
such as large trees, had approximately 500 redundant edges. Even
for the most complex trees, the redundant edge set removal was
manageable and was completed within minutes of user time. We
were able to significantly shorten the user time by implementing an
auto-focus feature where the camera automatically focuses on each
cycle while the user is processing it.

4.7 (A) Add domains Rx to the domain tree

‘We now assign parents to domains Rx. For complex plants, it is too
tedious to do this manually. Domains R1 are always parented to F
domains, whereas domains R2 can be parented to R1 or F. Such
parenting can never introduce new cycles into the domain graph.
We initially tried assigning a parent to each Rx domain by perform-
ing a minimum distance query to all the F domains, and select-
ing the closest (perhaps colliding) domain as the parent. However,
some Rx domains collided with more than one F domain, requir-
ing user intervention. Even worse, sometimes there was only one
colliding but incorrect parent, resulting in an undetected mistake.
This typically occurred when a leaf petiole is separated from the
branch by a small gap, whereas the tip of the leaf is (accidentally)
colliding with another branch. Instead, we use anchor points to
robustly determine the parent. The anchor points were selected
by the user in Section 4.2, once per instance set. The anchor po-
sitions on the instanced copies are now computed by finding the
world-coordinate location on the domain mesh whose texture co-
ordinates are (u,v), where (u,v) are the texture coordinates of the
anchor point on the representative instance. Such anchor position
computation was very robust in practice. We then perform a nearest
neighbor search, seeking the nearest triangle in all domains in F to
the anchor position; the closest domain becomes the parent. For R2
domains, we also search in R1. Our algorithm is robust to cracks
and can accommodate (intentionally) “floating” domains that are
common with billboarding. For example, tree leaves are sometimes
simply accumulated in close proximity to give a space-filling per-
ception, and are far from any branch. The nearest neighbor queries
are accelerated using a hierarchy of axis-aligned bounding boxes,
and only take a few seconds, even for complex models (Table 1).

4.8 (A) Build simulation meshes

We build the volumetric mesh for each domain by voxelizing the
domain’s triangle mesh [James et al. 2004] (Figure 7). We chose
this approach because it is completely automatic and supports arbi-
trary (potentially ill-formed) input “polygon soup” geometry. Al-
ternatively, one could employ automatic tetrahedral meshes such
as [Labelle and Shewchuk 2007]. The user specifies the maximum
voxelization resolution (it defaults to 100 in our system) for the

expanded bounding box of the input triangle mesh (we use expan-
sion factor of 1.2x). The voxelization resolution of each domain
is then set automatically, by assigning to each domain a resolution
proportional to the longest edge of its bounding box. Using such an
adaptive resolution, the meshes of different domains grade approx-
imately uniformly across the entire plant (see Figure 7).

The voxel meshes for the individual domains are separate meshes;
they need not topologically connect to meshes of other domains us-
ing any well-defined interface. Such meshing flexibility is possible
in domain decomposition simulators that do not need the connectiv-
ity requirement, such as [Twigg and Kaci¢-Alesi¢ 2010; Barbic¢ and
Zhao 2011]. Our “bottom-up” meshing has the advantage that an
entire simulation mesh never needs to be constructed. It is also very
modular. Input triangle mesh collisions of neighboring domains
(e.g., petals on a flower) are not a concern, because each domain
is simply meshed separately (see Figure 7). If a new domain needs
to be added, it can be pre-processed in isolation and added to the
domain graph. In [Barbi¢ and Zhao 2011], domain decompositions
were created by forming a global tetrahedral mesh, which was then
manually subdivided into domains. Although such a “’top-down”
approach results in well-defined interfaces, it requires careful man-
ual work to produce quality interfaces. For example, the choice of
whether to place a tetrahedron into the left or the right domain at
the interface can affect the bendability of short branches. Also, top-
down approaches require special handling in the presence of colli-
sion in the input triangle mesh; otherwise, the colliding branches or
petals will simply be welded in the global volumetric mesh.

4.9 (A) Assign fixed vertices

Fixed vertices connect a domain to its parent. The root domain is
rooted to the ground, either by fixing all vertices that are below a
user-provided height, or by manually selecting its fixed vertices.
Fixed vertices for the remaining domains are set automatically as
follows. For each parent-child pair in the hierarchy, we constrain
the child vertices that are located close to the parent. Specifically,
we detect child voxels that intersect parent voxels, and constrain all
the vertices in those child voxels. Because we always constrain all
eight vertices of a voxel, we avoid degenerate planar sets of fixed
vertices. The intersection test is accelerated using a bounding vol-
ume hierarchy. Such an assignment handles both the case where the
child voxels are smaller than parent voxels and may be completely
inside a parent voxel, and the case where child voxels are large and
may subsume parent voxels. It can happen that all the vertices of
a domain are deemed fixed; e.g., with small, in-grown, branches
close to a bigger branch; in such cases, we declare the domain to
be rigid. When no fixed vertices are detected, the domain is also
made rigid. Such cases are rare in our data, but sometimes occur
with domains not properly connected to the rest of the plant, e.g.,
small branches added for decoration in the tree crown. Note that
for our domain decomposition approach, it is not necessary to es-
tablish a well-defined interface between the two domains; the fixed
vertices of a child domain may even be outside of the parent mesh
(Figure 7, middle, right). Because the interfaces between branches
and/or leaves often have small surface areas, it is common to ne-
glect their bending. Often, plant simulators even assume that all the
parts (the branches) are completely decoupled [Habel et al. 2009;
Hu et al. 2012]. In our work, the domains are coupled, with the
assumption that the interface deformations are small.

4.10 (A) Compute low-dimensional simulation basis
and pre-process reduced dynamics

Given the fixed vertices, we compute linear modes, their large-
deformation correction (modal derivatives [Barbi¢ and James



2005]), and the simulation basis. By default, we use the first 10
linear modes, and a 20-dimensional basis. We use a default (and
tunable), spatially uniform, mass density p = 1000kg/ m>, Young’s
modulus E = 10°N/m? and Poisson’s ratio of v = 0.45, corre-
sponding to a fairly incompressible material. We then precom-
pute a geometrically nonlinear FEM reduced model for each do-
main [Barbi¢ and James 2005]. Each of these models is a com-
pact, low-dimensional representation of the FEM dynamics of each
domain. It supports large deformations, and can be timestepped
rapidly, in microseconds. The domains are coupled to each other as
described in Section 3. The entire process is automatic. In order to
save space and increase speed, we use an adaptive number of modes
per domain, by pre-processing smaller bases for smaller domains.
The user sets the maximum size of a domain simulation basis rmax
(we use rmax = 20). For a domain with e elements, the number of
modes is then computed as » = max (5, | rmax log(e)/log(emax)]),
where emax 1s the maximum number of elements in a domain (see
also [Barbi¢ and Zhao 2011]).

4.11 (A) Tune Young’s modulus

Reduced models incorporate the geometry of each domain and
automatically produce correctly scaled domain frequencies, e.g.,
longer branches vibrate slower. However, the global stiffness scale
is arbitrary; one can globally scale p and E with an arbitrary con-
stant without affecting the basis, and the precomputed reduced
polynomials only scale by a constant [Barbi¢ and James 2005]. Be-
cause we are using a FEM method, it would be possible to set the
material properties for wood, stems, leaves, etc. Although progress
on measuring elastic material properties has been made [Bickel
et al. 2009], the parameters for plants are typically not available.
Therefore, we assign default, spatially constant, E,v,p. We then
pre-process the reduced models, and exploit the fact that natural vi-
bration frequencies scale linearly with E. Next, we globally rescale
the Young’s modulus so that the lowest natural vibration frequency
of the root domain becomes 1 Hz, i.e., E' = E / f§7 where E is the
default Young’s modulus, and fy is the lowest natural frequency of
vibration of the root domain, determined using a sparse eigenvalue
solver [Lehoucq et al. 1997]. This computation is fast; it takes less
than one second even for complex models. The user can later fur-
ther adjust E of each domain, to make it stiffer or softer (Section 5).

5 Interactive Plant Design

Because our method is fast and modular, it is possible to use it as
an interactive shape editor for plants. The user can easily delete or
add new parts at runtime, either by duplicating existing plant parts,
or importing parts from a pre-processed library of plant parts. The
editing process is local and interactive. The mass, stiffness, posi-
tion and orientation of each branch, twig or leaf, as well as a linear
scale (geometric size), can all be adjusted interactively at runtime,
with immediate physically based simulation feedback to the user,
without any additional pre-processing. It is possible to randomize
these choices, creating an arbitrary number of variations of the same
plant. In our interactive editor, we can select an arbitrary domain,
and linearly scale the stiffness (Young’s modulus) of all of its ele-
ments by any factor & > 0. It can be shown that under such a scal-
ing, the reduction basis does not change [Barbi¢ and James 2005],
whereas the reduced forces scale by «; therefore, the scaling is in-
stant, and there is no need to maintain an explicit volumetric mesh
or its element material properties. Because stiffness is proportional
to the square of the lowest natural vibration frequency, such scaling
makes it possible to cause a branch to oscillate faster or slower. For
cinematic effect (to show more secondary motion), we sometimes
found it useful to make smaller branches oscillate more slowly than
dictated directly by physics. We achieve this by scaling every do-

main with a factor o = B¢, where 8 > 0 is a constant and d is the
depth of domain in the hierarchy. Because our method is fast, the
user can tune f3 interactively with immediate feedback; typically,
values close to § = 0.1 were producing good results.

Figure 8: Editing tree shapes using point constraints: 7he tree
shape was adjusted to avoid collision with the house. The six ma-
nipulated points are shown in red. Bottom row shows the tree with-
out the leaves. 45 branches, 125 twig billboards, 1154 leaf bill-
boards, 8 msec of simulation for one graphical frame.

In our system, the user can also manipulate the plant using inverse
kinematics-like handles. Using such a tool, it is possible to con-
strain and drag plant vertices, while the rest of the plant automat-
ically re-adjusts using physics to a good-looking, minimal strain
energy configuration. For example, a tree can be made to lean in a
certain direction or avoid external objects (Figure 8). The user can
also use it to resolve any unwanted collisions in the rest configura-
tion, or simply re-adjust the plant shape to increase scene geometric
variety. In our IK tool, the user can select or deselect an arbitrary
number of vertices (IK handles). As the user drags the mouse, a
three-dimensional force is applied to the active IK vertex, whereas
the remaining IK vertices are kept fixed to their positions using lin-
ear springs. The mouse force is applied in the “screen plane”, i.e.,
plane orthogonal to the view direction and cutting through the ma-
nipulated vertex. The force magnitude is proportional to the num-
ber of pixels traveled by the mouse since the beginning of the drag.
We use our standard real-time dynamics solver for such IK manip-
ulation; no special code is required. Because the model normally
undergoes dynamic motion, we must employ some mechanism to
quickly stabilize the motion to a limit equilibrium configuration.
One approach is to perform a Newton-Raphson iteration to seek
the model equilibrium under the IK linear spring forces (a static
solver [Mezger et al. 2008; Barbic et al. 2009]). However, such
a solver often suffers from a high linear system condition number,
which has lead to instabilities in our experiments. We found much
better results by simply using a high level of stiffness-proportional
Rayleigh damping, in a dynamic simulation. Although the model
does not reach the equilibrium configuration instantly, with proper
gains and damping the convergence is rapid and stable. A single
stiffness gain for all the linear springs was sufficient in our exam-
ples. Because we already injected sufficient damping into our sim-
ulator, linear springs did not need any additional damping.

We note that we first attempted to perform inverse kinematics by en-
forcing exact user control over the handle positions. This was per-
formed by solving, at every timestep, an optimization problem that



minimized the total strain energy of the plant subject to the exact IK
constraints. This approach did not work very well in practice. Be-
cause the handles must be specified in the three-dimensional space
which can be difficult to visualize on a 2D screen, it was easy for
the user to accidentally command unreasonable handle positions.
As the solver was trying to meet the constraint exactly, the plant
would stretch unnaturally, which led to vibrations and instabilities.
Instead, when positions are enforced via springs, the solver has the
ability to selectively “yield” on each constraint as needed. This
tends to produce much smoother, natural-looking shapes. We were
able to tune the IK stiffness gains to reach both good output shapes
and minimal deviation of the constrained vertices from their pre-
scribed positions (Figure 8). After the user is satisfied with the
shape, she can save it to disk, and re-process the reduced models
with respect to the new rest shape. For small/moderate edits where
the old reduced basis is still sufficient, a re-process is not necessary:
one can simply compute the reduced forces for the new shape for
each domain, and then offset reduced forces so that the new shape
is the rest configuration.

6 Pre-specified Fracture

In nature, plants often fracture at the joints between its parts. For
example, leaves or fruits detach from branches (see Figure 9), or
branches crack away from the main stem. Such fracture with pre-
specified patterns is useful in interactive applications because it is
controllable and artist-directable [Parker and O’Brien 2009]. We
support such fracture by monitoring the (reduced) interface forces
between adjacent domains. If the Ly-norm squared of reduced in-
terface force vector exceeds a user-adjustable threshold, we fracture
the entire subtree from the main structure. The subtree (in many
applications a single domain) then undergoes a ballistic trajectory
under gravity, e.g., peach tree fruits land on the ground (Figure 1).
Such fracture is computationally extremely inexpensive as the L;-
norm test can be performed in nanoseconds. Because each part
has its own rendering mesh independent of all the other parts, the
objects are automatically free of holes after separation and there
is no need for any re-meshing. The fracture events could also be
scripted / keyframed, e.g., to simulate trees undergoing an explo-
sion. Our domains can only fracture at the interfaces to other do-
mains. For more detailed fracture, domains can be divided during
the pre-process, e.g., the trunk can be pre-cut into two pieces.

Figure 9: Real-time Fracture: The tea bush (Camellia Sinensis)
leaves are shaken from the bush by the user-applied force in real
time. Left: Before fracture, with applied user force indicated. Mid-
dle: during fracture. Right: after fracture. Note that the leaves
close to the user force location fractured in greater numbers than
elsewhere on the model because they underwent higher accelera-
tions. 6 msec of simulation per graphical frame.

7 Results

We pre-processed over 100 plants; we provide a selected subset of
32 pre-processed and simulated models in Figure 10. It can be seen
that the performance is interactive even for very complex plants.

Plants of small to moderate complexity are fast enough for real-time
systems such as computer games. Inverse kinematics and fracture
were demonstrated in Figures 8 and 9, respectively. Plant motion
resulting from user (mouse) forces, followed by free vibration, is
demonstrated in Figure 11.

frame 44 frame 122

ik, frame 0

frame 122,
detail

Figure 11: Space-time instantaneous (localized) external force
followed by free vibration. Secondary motion in the smaller
branches due to motion of main trunk is clearly visible. Simula-
tion time: 5 msec per graphical frame.

We deform our plants using wind, user forces and gravity. Our wind
consists of two components: a wind with a (tunable) constant direc-
tion and magnitude, and a randomized wind, implemented as a 4D
space-time Perlin noise [Perlin 2002], with standard parameters:
number of frequencies and how quickly they decay (persistence).
All the wind parameters are easily adjustable at runtime without
any precomputation. Our method can model the entire spectrum
of winds from gentle breezes, moderate winds (Figure 1) to hurri-
canes (Figure 12). Stochastic noise is often used to animate trees
by directly driving the deformations [Ota et al. 2004]. We employ
Perlin noise to create spatially varying and controllably turbulent
wind forces, causing large deformations and secondary motion of
branches due to the motion of parent branches. We use Perlin noise
directly, but other wind generators such as the 1/ f’ B noise [Ota et al.
2004] or the Navier-Stokes equations [Akagi and Kitajima 2006;
Selino and Jones 2012] could be used instead. In order to apply
the wind, we must sample it at properly selected locations on the
model. One could evaluate the wind at every plant vertex, but do-
ing so would require many wind evaluations and subspace force
projections. Another alternative that we considered but did not pur-
sue due to prohibitive cost was to sample the wind on a regular
grid, and then seek the nearest vertex to each grid point. Instead,
we select a representative set of volumetric mesh vertices on each
branch domain, and then sample the wind at those locations (see
Figure 12, top-left). Each wind sample is scaled with the volume of
each branch. The user supplies the desired number of samples s per
domain. We use a constant number of samples for all the branches
(typically s = 5), but s could be scaled with domain size, e.g., s = 1
for leaves. The sampled vertices for a domain are then determined
automatically, as follows. We first build a mesh graph for our voxel
domain mesh, where vertices are nodes and nodes are connected if
they are adjacent mesh vertices. We then use Dijkstra’s algorithm
to compute the minimum graph distance of each volumetric mesh
vertex to the set of fixed vertices for this domain. Let D denote the
maximum distance. Then, foreachi=1,...,s, we select any vertex
with distance [iD/(s+ 1)] as our sample. Because plant branches



765,518t, 6,895d, 346f, 46,200t, 34d, 16f, 43,600t, 74d, 74f, 28,564t, 194d, 56f,
2,707dof, 30fps, 14.6MB 258dof, 500fps, 3.0MB 1,131dof, 140fps, 16.7MB 906dof, 170fps, 9.0MB
A ik g

Bodatyg 70

48,464t, 1,201d, 194f, 51',962t, 272d, 15f, 24,738t, 191d, 191f, 36,536t, 1,795d, 51f,
1,827dof, 65fps, 8.6MB 219dof, 139fps, 4.6MB 3,171dof, 47fp5, 32MB 810dof, 65fps, 12.1MB

.

| A ‘ [ ‘ *
106,322t, 327d, 35f, 107,678, 2,684d, 17f, 156,872t, 94, 9f, 266,756t, 3,382d, 11f,
507dof, 152fps, 17.5MB 253dof, 81fps, 6.7MB 135dof, 220fps, 28.2MB 178dof, 44fps, 8.4MB

‘9,882t, 417d, 81f,
844dof, 170fps, 3.9MB

4,340t, 20d, 20f,
372dof, 490fps, 5.3MB

10,202t, 68d, 54f,
849dof, 180fps, 8.4MB

164,744, 2,294d, 14f,
250dof, 58fps, 5.6MB

81,228t, 9,077d, 588f, 190,582t, 9,751d, 2,441f, 38,272t, 7,003d, 420f, 90,085t, 1,768d, 364f,

4,858dof, 25fps, 13.0MB 19,140dof, 13fps, 53.6MB 3,613dof, 41fps, 11.5MB 3,113dof, 53fps, 7.2MB

'12,698t, 1,335d, 56f, 5,587t, 644d, 43f, 142,087t, 2,046d, 289f, 40,i66t, 1,288d, 1,288f,
659dof, 162fps, 4.2MB 360dof, 316fps, 1.8MB 2,331dof, 66fps, 11.9MB 8,930dof, 43fps, 24.7MB

74,456t, 333d, 60f,
613dof, 170fps, 9.1MB

hy ¢ )
123,890t, 16,549d, 1,694f, 483,574t, 15,229d, 2,382f, 10,727t, 12,83d, 1,087f,
9,825dof, 20fps, 15.4MB 14,983dof, 26fps, 64.0MB 8,233dof, 30fps, 22.8MB

148,401t, 26,667d, 105f, 175,132t, 7,287d, 255f,‘ 258,193t, 20,655d, 20,655f, 147,732, 2,491d, 125f,
1,060dof, 19fps, 12.3MB 2,005dof, 26fps, 10.4MB 27,049dof, 9fps, 47.3MB 870dof, 45fps, 9.3MB

Figure 10: Representative subset of simulated models including flowers, bushes, broadleaf and conifer trees. Input meshes are from Xfrog,
SpeedTree and 3dmolier (Turbosquid) model libraries. Models were deformed either by pulling on vertices, gravity, or using a 4D Perlin
wind. Each plant reports #triangles, #domains, #flexible domains, total # of DOFs, the simulation frame rate and memory. The simulation
frame rate includes all computation to produce the next graphical frame, except the rendering itself. The pre-processing times range from a
minute for simple models to 20 minutes for the most complex trees. Intel Xeon 2x8 cores 2.9 GHz CPU, 32GB RAM. GeForce GTX 680, 2GB
RAM. Models from Table 1 are shown in (1-indexed) (rows, columns) (1,4), (2,1), (8,3), (5,3), respectively. Selected animations are shown in
the main video and Supplementary Material 1.



are long and slender, and the running time of Dijkstra’s algorithm
is linear in the number of vertices of each domain, such a strategy
produces well-distributed samples in negligible time.

Figure 12: Palm tree (Cocos Nucifera) in strong Perlin wind:
Top-Left: the locations (in red) where the wind is sampled. Other
images: selected animation frames. Simulation time: 4 msec per
graphical frame. In this demo, palm leaves are not simulated, but
are skinned to the palm branches. Each leaf is skinned entirely
to one branch, with each vertex copying the displacement (in lo-
cal branch frame) of the closest branch vertex in the undeformed
configuration. Such skinning can greatly enrich the plant visual
appearance at a minimal computational cost.

Figure 13: Gravity: Left: undeformed. Right: under gravity.

Our system also supports plants loaded by gravity (Figure 13).
Because gravity acts in a constant direction, it needs to be ro-
tated into the frame of reference of each domain, fF*' = Ul-TRi fs
where U; and R; are the matrix specifying the low-dimensional
space, and world-coordinate rotation of domain i, respectively, and
f=10, —¢ 0,0, —g, 0, ...0, —g, 0]7 is the gravity vector. Be-
cause f is constant, fF*' can be efficiently precomputed using the
sandwich transform [Kim and James 2011], by evaluating f* for

R, = ekeeT7 where ¢y, is the k-th standard basis vector in R3, for
all k,¢ = 1,2,3. At runtime, for each non-rigid domain, one then
merely has to multiply a pre-computed 7; X 9 matrix (r; = #reduced
DOFs of domain i) with the 9-vector of the entries of R;, impos-
ing a negligible overhead. A nonlinear optimization in the space of
domain reduced coordinates could be employed to pre-load plants

2
2

T T T T
—Multidomain dynamics
__Multidomain dynamics
with adjusted frequencies
“\ -~ Full space simulation

o
=

o
w
T

e 2
o = b

| frame O

z- displacement of vertex 4422

& & o
w o4

o
s

. I I I h . 7 . . I
200 400 600 800 1000 1200 1400 1600 1800 2000
timestep

Figure 14: Comparison to full simulation. 91 flexible domains,
1183 modes, 11,396 triangles. All three simulations visually look
similar. The unscaled reduced simulation has a higher natural
frequency, for two reasons: (1) reduced systems lack degrees of
freedom and are typically somewhat stiffer than unreduced systems
with equal material properties, and (2) interface lumping [Barbi¢
and Zhao 2011] increases frequency, much like a pendulum with
a shorter length oscillates faster. After scaling, the frequency and
amplitude match full simulation closely.

so that the input configuration is the rest configuration under grav-
ity [Derouet-Jourdan et al. 2010; Twigg and Kaci¢-Alesi¢ 2011].

Comparison to full simulation: One practical approach to ani-
mate vegetation is to build a simulation mesh for the entire plant,
and then timestep the dynamics using a deformable object simula-
tor. In Figure 14, we compare our method to a geometrically non-
linear full simulation [Capell et al. 2002]. For this experiment, we
generated a global tetrahedral mesh for the shefflera plant, and then
manually subdivided it into domains. This process took 8 hours of
work, whereas our pre-processing pipeline takes less than 10 min-
utes. In order to make the motion more natural, we made the stem
2x stiffer than the rest of the mesh. We then simulated the shefflera
under an identical force load, material and simulation properties. In
this example, our method (including time for u = Ugq displacement
computation) is 23x faster than the full simulation. Visually, the two
motions differ slightly in frequency, but appear qualitatively simi-
lar. If a close frequency match is desired, it is possible to scale the
frequency spectrum of each domain so that the lowest frequency
matches some externally prescribed frequency, such as frequency
from full simulation, or real measurements of plants [James et al.
2006]. We illustrate this concept with a 1D harmonic oscillator,
mX+dx+ kx = f, whose natural angular frequency (without damp-
ing) is @ = /k/m. Suppose a different frequency ®' # ® is de-
sired. The modified mass and stiffness must satisfy a>km’ = k'm,
where a = @' /®. If we impose an additional condition that the
new oscillator attains the same maximum amplitude after a fixed
initial impulse, we obtain X’ = atk and m’ = m/a. With plants, we
perform the same scaling, to match the lowest vibration frequency,
separately for each domain. We obtain the desired frequency for
each branch by creating a volumetric mesh for the entire subtree
rooted at that branch, and computing (unreduced) mass and stift-
ness matrices M and K. The desired angular velocity is then the
square root of the lowest eigenvalue of Mx = AKx, which we find
using a sparse eigensolver [Lehoucq et al. 1997]. We scale the re-
duced mass matrix by 1/a and internal elastic forces by o. The
result is shown in Figure 14. We note that, instead of matching the
lowest frequencies to full FEM simulation, in the future one could
attempt to match them to real-world plant observations.



Rendering: We render the plants interactively using OpenGL.
Billboards are in practice often partially transparent, with alpha val-
ues continuously ranging from zero to one. Therefore, one-pass
alpha-testing results in noticeable aliasing, for example, at the leaf
edges. We use two-pass rendering where we first render all the
geometry with alpha-testing enabled, i.e., fragments where the al-
pha value is strictly less than 1.0 are discarded. We then make the
depth buffer read-only, disable alpha-testing, enable alpha blending,
and re-render all domains that use transparent texture maps. Note
that in many models transparent textures represent a large fraction
of the geometry, e.g., leaves, conifer needles, twigs. Our simula-
tion is substantially faster than rendering; more optimized render-
ing pipelines could be designed [Sousa and Crytek 2007]. Before
our models can be rendered, the displacements (in local domain
frame of reference) of all the mesh vertices must be computed via
the modal equation u; = U;q; [James and Pai 2002]. Their world-
coordinate positions are then constructed using the domain’s cur-
rent position vector and rotation matrix. Our reported simulation
timings include the time necessary to compute u; and world coor-
dinate triangle mesh vertex positions. We compute u; on the CPU,
but GPU implementations [James and Pai 2002] would be readily
possible. We note that matrix U; here contains the modes that were
already interpolated (during pre-process) from the volumetric mesh
to the plant triangular geometry, using barycentric interpolation.
We found that such a strategy is usually faster than interpolating
volumetric mesh displacements to the triangle mesh at runtime; the
tradeoff depends on how finely the triangle meshes are tessellated.
Offline renderings were performed using the Yafaray ray tracer.

8 Conclusion

We presented a system for stable physically based simulation of
anatomically realistic botanical systems. We demonstrated a robust
pipeline to pre-process “polygon soup” plant geometry for domain
decomposition simulations. Our system scales to the complexity of
real-world adult trees, flowers and bushes. We have pre-processed
over 100 plants from several publicly available vegetation model
libraries. Our system accommodates unorganized, unprocessed tri-
angle input geometry, including billboards, and is enabled by recent
advances in model reduction and domain decomposition. We sup-
port fracture, interactive plant design and frequency tuning.

Limitations and future work: Our system cannot handle plants
that are in continuous contact with their natural environment, such
as a vine climbing a mesh fence or ivy climbing a tree. For plants
in simpler (ground) contact such as zucchini or watermelons, fric-
tional contact could be handled using constraint solvers, or even
penalty forces. Our system avoids loops, which has not been a
problem in practice as the vast majority of plants do not have loops.
Loops could be addressed using penalty forces. Our material pa-
rameters are tuned by the user to achieve a specific effect and the
models are then simulated, but could in the future incorporate me-
chanical properties or other observation data from real plants. Our
instancing can be easily extended to domains that consist of sev-
eral disjoint components, each texture-mapped with a distinct tex-
ture map. A more challenging case, however, would be to sup-
port hierarchical instancing, where instances themselves consist of
replicated copies, e.g., replicated blooms, each consisting of repli-
cated but otherwise identical petals. We note, however, that many
blooms in practice are modeled as a single global quadrilateral bill-
board, replicated in different orientations, where our single-level
instancing is sufficient. Methods that use alternative simulation
bases [Gilles et al. 2011] may be an interesting approach to sim-
ulate plants. We use a semi-implicit integrator to timestep our mod-
els which provides stability but also introduces artificial damping.
It would be interesting to seek integration schemes that can work

with model reduction and that can avoid artificial damping. Sim-
ulator realism would be improved by handling self-collisions, and
simulating two-way coupling between the wind and the plant.

Acknowledgements: We thank Somya Sharma for help with
plant authoring, Intel Corporation for donating two workstations to
perform this research, and Zoran Kaci¢-Alesi¢ and ILM for feed-
back on our system. This research was sponsored in part by the
National Science Foundation (CAREER-53-4509-6600).

References

AKAGI, Y., AND KITAJIMA, K. 2006. Computer animation
of swaying trees based on physical simulation. Computers &
Graphics 30, 4, 529-539.

BARBIC, J., AND JAMES, D. L. 2005. Real-time subspace integra-
tion for St. Venant-Kirchhoff deformable models. ACM Trans.
on Graphics 24, 3, 982-990.

BARBIC, J., AND ZHAO, Y. 2011. Real-time large-deformation
substructuring. ACM Trans. on Graphics 30, 4, 91:1-91:7.

BARBIC, J., DA SILVA, M., AND PoPOVIC, J. 2009. Deformable
object animation using reduced optimal control. ACM Trans. on
Graphics 28, 3.

BEAUDOIN, J., AND KEYSER, J. 2004. Simulation levels of detail
for plant motion. In Symp. on Computer Animation (SCA), 297—
304.

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B.,
AND GRINSPUN, E. 2008. Discrete elastic rods. ACM Trans. on
Graphics 27, 3, 63:1-63:12.

BERTAILS, F. 2009. Linear time super-helices. Comput. Graphics
Forum 28, 2, 417-426.

BICKEL, B., BAECHER, M., OTADUY, M., MATUSIK, W., PFIS-
TER, H., AND GROSS, M. 2009. Capture and modeling of
non-linear heterogeneous soft tissue. ACM Trans. on Graphics
28, 3, 89:1-89:9.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
PoPOVIC, Z. 2002. A Multiresolution Framework for Dynamic
Deformations. In Symp. on Comp. Animation 2002, 41-48.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990.
Introduction to Algorithms. MIT Press/McGraw-Hill.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., AND
THOLLOT, J. 2010. Stable inverse dynamic curves. ACM Trans.
on Graphics 29, 6, 137:1-137:10.

DEUSSEN, O., AND LINTERMANN, B. 2005. Digital Design of
Nature: Computer Generated Plants and Organics. Springer-
Verlag, New York.

DIENER, J., RODRIGUEZ, M., BABOUD, L., AND REVERET, L.
2009. Wind projection basis for real-time animation of trees.
Computer Graphics Forum 28, 2, 533-540.

GILLES, B., BOUSQUET, G., FAURE, F., AND Pal, D. K. 2011.
Frame-based elastic models. ACM Trans. on Graphics 30, 2,
15:1-15:12.

HABEL, R., KUSTERNIG, A., AND WIMMER, M. 2009. Phys-
ically Guided Animation of Trees. Computer Graphics Forum
28, 2,523-532.

HADAP, S. 2006. Oriented strands: dynamics of stiff multi-body
system. In Symp. on Computer Animation (SCA), 91-100.



Hu, S., CHIBA, N., AND HE, D. 2012. Realistic animation of
interactive trees. The Visual Computer 28, 859-868.

INTERACTIVE DATA VISUALIZATION, 1999.
www.speedtree.com.

Speedtree.

JAMES, D. L., AND PAI, D. K. 2002. DyRT: Dynamic Response
Textures for Real Time Deformation Simulation With Graphics
Hardware. ACM Trans. on Graphics 21, 3, 582-585.

JAMES, D. L., BARBIC, J., AND TWIGG, C. D. 2004. Squashing
Cubes: Automating Deformable Model Construction for Graph-
ics. In Proc. of ACM SIGGRAPH Sketches and Applications.

JAMES, K. R., HARITOS, N., AND ADES, P. K. 2006. Mechanical
stability of trees under dynamic loads. American J. of Botany 93,
10, 1522-1530.

JAMES, D. L., TWiGG, C. D., COVE, A., AND WANG, R. Y.
2007. Mesh Ensemble Motion Graphs: Data-driven Mesh Ani-
mation with Constraints. ACM Trans. on Graphics 26, 4.

KiMm, T., AND JAMES, D. 2011. Physics-based character skinning
using multi-domain subspace deformations. In Symp. on Com-
puter Animation (SCA), 63-72.

LABELLE, F., AND SHEWCHUK, J. R. 2007. Isosurface Stuff-
ing: Fast Tetrahedral Meshes with Good Dihedral Angles. ACM
Trans. on Graphics 26, 3, 57:1-57:10.

LEHOUCQ, R., SORENSEN, D., AND YANG, C. 1997. ARPACK
Users’ Guide: Solution of large scale eigenvalue problems with
implicitly restarted Arnoldi methods. Tech. rep., Comp. and Ap-
plied Mathematics, Rice Univ.

LiN, M. C., AND GOTTSCHALK, S. 1998. Collision Detection Be-
tween Geometric Models: A Survey. In Proc. of IMA Conference
on Mathematics of Surfaces, 37-56.

LINTERMANN, B., AND DEUSSEN, O. 1999. Interactive modeling
of plants. IEEE Comp. Graphics and Applications 19, 1, 56-65.

LONGAY, S., RUNIONS, A., BOUDON, F., AND PRUSINKIEWICZ,
P. 2012. Interactive procedural modeling of trees on a tablet.
In Proc. of Eurographics Symp. on Sketch-Based Interfaces and
Modeling, 107-120.

Lu, H., Guo, X., ZHAO, C., AND L1, C. 2011. Physical model
for interactive deformation of 3d plant. International Journal of
Virtual Reality 10, 2, 33.

MARTIN, S., KAUFMANN, P., BOTSCH, M., GRINSPUN, E., AND
GROSS, M. 2010. Unified simulation of elastic rods, shells, and
solids. ACM Trans. on Graphics 29, 4, 39:1-39:10.

MEZGER, J., THOMASZEWSKI, B., PABST, S., AND STRASSER,
W. 2008. Interactive physically-based shape editing. In Proc. of
the ACM Symp. on Solid and physical modeling, 79—89.

MULLER, M., AND CHENTANEZ, N. 2011. Solid simulation with
oriented particles. ACM Trans. on Graphics 30, 4, 92:1-92:10.

MOULLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless Deformations Based on Shape
Matching. ACM Trans. on Graphics 24, 3, 471-478.

OTA, S., TAMURA, M., FusiMoTO, T., MURAOKA, K., AND
CHIBA, N. 2004. A hybrid method for real-time animation of
trees swaying in wind fields. The Visual Computer 20, 613—623.

PARKER, E. G., AND O’BRIEN, J. F. 2009. Real-time deforma-
tion and fracture in a game environment. In Symp. on Computer
Animation (SCA), 156-166.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations:
Modal dynamics for graphics and animation. Computer Graph-
ics (Proc. of ACM SIGGRAPH 89) 23, 3, 215-222.

PERLIN, K. 2002. Improving Noise. ACM Trans. on Graphics 21,
3, 681-682.

PIRK, S., STAVA, O., KRATT, J., SAID, M. A. M., NEUBERT, B.,
MECH, R., BENES, B., AND DEUSSEN, O. 2012. Plastic trees:
interactive self-adapting botanical tree models. ACM Trans. on
Graphics 31, 4, 50:1-50:10.

PRUSINKIEWICZ, P. 1986. Graphical applications of 1-systems. In
Graphics Interface / Vision Interface, 247-253.

SAKAGUCHI, T., AND OHYA, J. 1999. Modeling and animation of
botanical trees for interactive virtual environments. In Proc. of
the Symp. on Virtual reality software and technology, 139-146.

SELINO, A., AND JONES, M. D. 2012. Large and Small Eddies
Matter: Animating Trees in Wind Using Coarse Fluid Simulation
and Synthetic Turbulence. Comp. Graphics Forum 32, 1, 75-84.

SIFAKIS, E., AND BARBIC, J. 2012. FEM Simulation of 3D De-
formable Solids: A practitioner’s guide to theory, discretization
and model reduction, Part 2: Model reduction. In SIGGRAPH
Course Notes. www.femdefo.org.

SousA, T., AND CRYTEK. 2007. GPU Gems 3, Chapter 16. Veg-
etation Procedural Animation and Shading in Crysis. Addison-
Wesley Professional, Boston.

STAM, J. 1997. Stochastic Dynamics: Simulating the Effects of
Turbulence on Flexible Structures. Comp. Graphics Forum 16,
3, 159-164.

TURBOSQUID, 2000. www.turbosquid.com.

TWIGG, C., AND KACI¢-ALESIC, Z. 2010. Point cloud glue: con-
straining simulations using the procrustes transform. In Symp. on
Computer Animation (SCA), 45-54.

TWIGG, C., AND KACIC-ALESIC, Z. 2011. Optimization for
sag-free simulations. In Symp. on Computer Animation (SCA),
225-236.

WEBER, J. P. 2008. Fast simulation of realistic trees. IEEE Com-
puter Graphics and Applications 28, 3, 67-75.

WONG, J. C., AND DATTA, A. 2004. Animating real-time realistic
movements in small plants. In Proc. of GRAPHITE 2004, 182—
189.

XFROG, 2009. www.xfrog.com.

YANG, Y., XU, W., Guo, X., ZHOoU, K., AND GUuo, B. 2013.
Boundary-aware multi-domain subspace deformation. [EEE
Trans. on Visualization and Computer Graphics, to appear.

ZHANG, L., SONG, C., TAN, Q., CHEN, W., AND PENG, Q.
2006. Quasi-physical Simulation of Large-Scale Dynamic Forest
Scenes. In Advances in Computer Graphics, Springer, vol. 4035
of Lecture Notes in Computer Science, 735-742.

ZHANG, L., ZHANG, Y., JIANG, Z., L1, L., CHEN, W., AND
PENG, Q. 2007. Precomputing data-driven tree animation. Com-
puter Animation and Virtual Worlds 18, 4-5, 371-382.

ZHANG, L., ZHANG, Y., CHEN, W., AND PENG, Q. 2008. Real-
time simulation of large-scale dynamic forest with gpu. In IEEE
Conf. on Circuits and Systems, 614—-617.



