
ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 1

6-DoF Haptic Rendering using Continuous
Collision Detection Between Points

and Signed Distance Fields
Hongyi Xu, Member, IEEE, Jernej Barbič, Member, IEEE,

Abstract—We present an algorithm for fast continuous collision detection between points and signed distance fields, and demonstrate how to
robustly use it for 6-DoF haptic rendering of contact between objects with complex geometry. Continuous collision detection is often needed in
computer animation, haptics and virtual reality applications, but has so far only been investigated for polygon (triangular) geometry representations.
We demonstrate how to robustly and continuously detect intersections between points and level sets of the signed distance field. We suggest using
an octree subdivision of the distance field for fast traversal of distance field cells. We also give a method to resolve continuous collisions between
point clouds organized into a tree hierarchy and a signed distance field, enabling rendering of contact between rigid objects with complex
geometry. We investigate and compare two 6-DoF haptic rendering methods now applicable to point-vs-distance field contact for the first time:
continuous integration of penalty forces, and a constraint-based method. An experimental comparison to discrete collision detection demonstrates
that the continuous method is more robust and can correctly resolve collisions even under high velocities and during complex contact.

Index Terms—haptics, 6-DoF, continuous collision detection, signed distance fields, contact, constraints, penalty forces

F

1 INTRODUCTION

H APTIC rendering of contact between complex geometry can
be efficiently performed by querying a point-cloud against an

implicit function, such as a signed distance field. Such methods are
commonly used in industrial practice; a common example is the
Voxmap PointShell (VPS) method and its improvements [1]–[6].
To the best of our knowledge, all previous methods for point-cloud
vs implicit function haptic rendering only investigated discrete
collision detection, and are as such prone to interpenetrations, or
even tunneling. In this paper, we demonstrate how to perform
fast continuous collision detection which detects the exact time of
contact between two objects within two successive time steps. Our
continuous collision detection algorithm is applied to 6-DoF haptic
rendering of contact between point-clouds and signed distance
fields, making the simulations robust against high velocities and
tunneling.

Given a query point x from some region of space, such as a
bounding box enclosing the geometry, the distance field is a
scalar function that gives the minimum distance from x to the
geometry. Distance fields sampled on regular 3D grids are a
popular datastructure in computer graphics and haptics [7], and
have been used in many applications, such as collision detection
and morphing. Distance fields can be signed or unsigned. Signed
distance fields store the sign specifying whether the query point is
inside/outside of the object. Representing surfaces by a distance
field is advantageous since there are no restrictions about the
topology [8].

Distance fields have been employed to detect collisions, especially
for rigid bodies, and even self-collisions. Their power originates
from the fact that distances to the nearest geometry can be
approximated for arbitrary query locations by simple trilinear

• Both authors are with the Department of Computer Science, University of
Southern California, Los Angeles, CA, 90089.
E-mail: hongyixu@usc.edu, jnb@usc.edu.

interpolation in O(1) time, independent of the geometric com-
plexity of the object. However, existing methods only applied
distance fields to discrete collision detection. Continuous collision
detection is regarded as more robust as it finds the exact contacts of
dynamically simulated objects between two successive time steps.
Previous methods focused on explicit surface representations such
as polygonal (triangular) geometry and pairwise face/vertex and
edge/edge continuous collision detection tests. We propose a con-
tinuous collision detection algorithm between points and implicit
surfaces represented by distance fields, bringing the benefits of
continuous collision detection to such simulations. Assuming a
linear trajectory of points and the distance field object during each
timestep, the intersection(s) with a distance field isosurface can be
detected by checking a line segment against a signed distance field.
We accelerate this process using a spatial octree subdivision of
the distance field, storing the minimum distance values for octree
subtrees. This enables a fast traversal of the distance field grid
cells. We also demonstrate how to combine a sphere hierarchy
of points (we use the nested point tree [4]) with the fast grid
cell traversal, enabling contact between two rigid objects with
complex geometry. Our algorithm can effectively cull unnecessary
continuous collision detection tests, especially in physically based
simulations. Our experiments demonstrate that we can achieve
significant speedups using our acceleration techniques.

We demonstrate the effectiveness of our algorithm using two
haptic rendering methods for contact between rigid objects with
complex geometry. These methods were previously designed for
triangle mesh contact, and our work makes it possible to apply
them to contact between point clouds and distance fields. Inspired
by the continuous penalty force model [9], we present a penalty
contact resolution method to match our continuous collision
detection algorithm. In addition to forces [9], our method also
computes continuous penalty torques and damping forces. The
second method that we use and experimentally evaluate is a



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 2

constrained method, similar to [10], but adapted to points and
distance fields. Our experiments show that both methods greatly
benefit from continuous collision detection, all the while still
maintaining a high simulation update rate. Both methods benefit
from improved stability, and for the constrained method, also
absence of penetrations and tunneling.

Our contributions include:

• an efficient algorithm for continuous collision detection
between points and signed distance fields,

• exact continuous test between a trilinearly interpolated
implicit function and a line segment,

• fast grid traversal using a spatial octree subdivision of the
distance field,

• point-tree traversal algorithm for continuous collision
culling of contact between two rigid objects with complex
geometry,

• continuous penalty contact and damping model to be em-
ployed in concert with our continuous collision detection,

• an experimental evaluation of a continuous constraint
method and a continuous penalty-based method, in 6-DoF
haptic rendering applications involving complex geometry
and distributed contact.

2 RELATED WORK

Numerous approaches have been investigated to detect collisions
between interfering objects; see, for example, the survey [8].
Collision detection can be categorized into discrete and contin-
uous. Discrete methods only check for collisions at specified time
instances. For a greater computational cost, continuous collision
detection provides more robustness by detecting all the collisions
between two discrete time instances [11]–[15]. Most of the exist-
ing continuous methods work by computing the roots of polyno-
mial functions, to resolve the continuous collisions between basic
pairs of polygonal primitives such as triangle/vertex or two edges.
Collisions between analytical implicit and parametric functions
that deform in time can be resolved using interval arithmetics [16],
[17]. The equations become cubic when linearly interpolating
vertex motion [9], [11], [18]. Continuous collision between such
pairs of primitives is sensitive to numerical error and the em-
ployed tolerances, requiring special care [19], [20]. Different from
these polygon-based methods, we detect continuous collisions
between implicit functions and points, by intersecting distance
fields against line segments. The complexity of our algorithm
depends on the number of points and the distance field resolution,
but is independent of the underlying triangular geometry.

A distance field datastructure can rapidly provide the distance
to any isosurface for any location in space. Therefore, signed
distance field can quickly detect collisions, and have been used in
many rigid-rigid [21], [22] and rigid-deformable simulations [4],
[23], [24]. These previous methods were, however, designed
for discrete collision detection, whereas we perform continuous
collision detection. Ray tracing for implicit isosurface rendering
has been well studied [25]–[27]. Specially, Onjřej [28] proposes
a method to ray-trace isosurfaces represented by distance fields.
Similarly, we also traverse distance fields using straight lines to
detect collisions with implicit surfaces. In contrast to rendering,
however, we perform intersections between line segments and

distance fields, as opposed to semi-infinite rays and distance fields
as in ray tracing. This difference is substantial because in typical
physically based simulations, line segments between consecutive
timesteps are usually short and the point positions exhibit a lot of
temporal coherence. In addition, instead of using two-level sparse
grid blocks as in [28], we accelerate the traversal using an octree
hierarchy with multiple levels. Point tree hierarchies have been
previously applied to discrete collision detection [4], [29]–[31].
We combine hierarchies of points with our distance field octree-
based traversal, for fast continuous collision detection.

Haptic rendering has been an active area of research over the
last decade [32]. Contact resolution methods in haptic render-
ing can be loosely categorized into penalty-based methods [1],
[3], [4], [6], [33], [34] and constraint-based methods [10], [31],
[35]–[38]. Penalty-based methods resolve contacts by the use of
elastic repulsive forces. They are a simple, efficient and popular
method in haptic rendering. However, with only discrete collision
detection, penalty methods can result in non-smooth contact forces
and torques when the contact stiffness is set to a high value.
Continuous penalty method [9] alleviates this problem by per-
forming continuous collision detection and integrating the contact
impulses over the timestep interval. Constraint-based methods
model collision response as a constrained optimization, typically
either using velocity as the solution variable [36], [38] or using
acceleration as target for quasi-static simulation [10]. Although
the contact constraints do not permit penetration at the detected
contact sites, continuous collision detection is still necessary to
ensure a completely interpenetration-free trajectory due to nu-
merical integration [39]. Ortega et al. [10] integrates these ideas
together by first performing an explicit Euler integration with the
optimized 6-DoF constrained acceleration and then using triangle
mesh-based continuous collision detection to stop the God object
at the first contact site. We apply our continuous collision detection
between points and signed distance fields to a continuous penalty
method (similar to [9]) and a constraint-based method (similar
to [10]). We compare the methods in terms of speed, penetration,
reliability and robustness.

3 CONTINUOUS COLLISION DETECTION

We now describe how we perform continuous collision detection
between point-sampled objects and signed distance fields. Both
the point-sampled object and the distance field object undergo
arbitrary rigid body motion. Given a distance field φ : R3→R and
a scalar value σ , the isosurface (level set) corresponding to σ is
defined as Sσ = {p |φ(p) = σ}. The penetration depth of a point
at time t is determined by transforming the point position at time
t into the frame of reference of the distance field object at time t,
and looking up the signed distance value. Therefore, we study the
trajectory r(t) of the point in the frame of reference of the signed
distance field object, for tmin ≤ t ≤ tmax, where tmin and tmax are the
start and end of the timestep, respectively. The task of continuous
collision detection is to determine the time(s) when r(t) crosses
the isosurface Sσ , for some chosen σ ∈ R. Typically, we will use
σ = 0, but other values of σ will also be useful when combining
our algorithm with a bounding volume hierarchy of points.

For general rigid body motion, the trajectory r(t) during the time
interval t ∈ [tmin, tmax] is a cycloide and not a polynomial function
of t. As commonly done with continuous collision detection, we



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 3

Fig. 1: Finding the intersection of the line segment and isosur-
face using bisection: Left: line segment passes through a cell that
contains the isosurface. Right: finding the root of φ(r(t)) = σ .

assume that the trajectory r(t) can be reasonably approximated
by a line segment, r(t) = r(tmin)+ (t − tmin)d, where d ∈ R3 is
the normalized direction from r(tmin) to r(tmax). Point continuous
collision detection therefore amounts to checking for collisions
between a line segment and the isosurface of the signed distance
field. Specially, for t ∈ [tmin, tmax], we want to detect all the
roots of φ(r(t)) = σ , and identify the subintervals of [tmin, tmax]
where φ(r(t))≤ σ . Note that for some applications of continuous
collision detection, only the first time of contact is needed. We
can, however, also detect all the intersecting subintervals, which is
needed for our continuous contact forces and torques (Section 4.1).

3.1 Line Segment vs Distance Field Cell Intersection

In our work, we use the uniform-grid distance field. Starting from
o, we successively traverse the grid cells along the line segment.
We identify the next grid cell using a 3D discrete differential
analyzer algorithm [40], similar to Bresenham’s algorithm for
rasterizing line segments into pixels. This algorithm is fast because
it can identify the next cell only with integer arithmetics (avoids
floating-point operations). We can proceed to the next cell if the
distances at the eight cell corner grid points are all greater or
smaller than σ . Otherwise, a test for intersection is performed,
and, if the line segment intersects the isosurface, the intersection
point is calculated.

We detect the intersection point thit by finding the roots of
φ(r(thit)) = σ . Distance fields are sampled discretely on the grid,
and we can approximate the distance function for any query point
p inside the cell using trilinear interpolation of the values at the
eight grid cell vertices as φ(p) = φ(wx,wy,wz), where wx,wy,wz
are the barycentric weights at p. We skip the cell if the distance
values φin and φout at the entering and exiting points are both larger
or smaller than σ . Otherwise, for the intersection point r(thit), the
barycentric weights can be computed by linearly interpolating the
weights of entering and exiting points as,

(whit
x ,whit

y ,whit
z ) = (1−β )(win

x ,w
in
y ,w

in
z )+β (wout

x ,wout
y ,wout

z ), (1)

for β ∈ [0,1]. Therefore, we get a cubic equation
φ(wx(β ),wy(β ),wz(β )) = σ for the unknown β ∈ [0,1].
We calculate the smallest real root on the [0,1] interval
using Cardano’s formulas [41]. The intersection time is then
thit = (1−β )tin+β tout. This method gives the exact analytical first
point of intersection, at the expense of forming the coefficients of
the cubic polynomial and applying Cardano’s formulas.

Fig. 2: Bisection method failures: Assuming σ = 0, we give two
examples where the bisection method either misses a contact,
or returns an incorrect first contact. (a) Both φin and φout have
positive signs and the bisection method will directly skip this cell
and miss the contacts. (b) The bisection method will return the
second contact site instead of the first one and even give the wrong
sign flag for the line segment traversal. The exact cubic polynomial
method does not suffer from these problems.

Alternatively, one can also approximately obtain the intersection
point using bisection. Because distances beyond the resolution of
each individual cell are not available, we assume that there is a
single intersection inside each cell. We first approximate thit as
the time when the line connecting values φin and φout crosses the
isosurface σ ,

thit = tin +(tout− tin)
φin−σ

φin−φout
. (2)

Next, we select the interval [t1, t2] from the two subintervals
[tin, thit] and [thit, tout] such that φ(r(t1))− σ and φ(r(t2))− σ

have different signs. We repeat this process until φ(r(thit)) has
converged to σ , or the maximum number of iterations (5 in
our implementation) is exceeded. The bisection is illustrated in
Figure 1. In our experiments, the bisection method is about 1.2×
faster than the cubic polynomial exact method, but can miss
collisions. The exact method guarantees that no contact is missed
and returns the exact solution for the first contact (if any). In
Figure 2, we give two concrete examples where bisection fails to
detect the correct first contact. After obtaining all the intersecting
points, we assemble all the colliding subintervals of [tmin, tmax].

3.2 Octree-based Acceleration of the Cell Traversal

Fig. 3: Octree cell traversal.

Given a line segment, we now need
to traverse the distance field cells in
the search for the first contact (if
any). If the line segment starts or
ends outside of the bounding box
of the distance field, it is clipped to
the box. In practice, only a small
portion of the cells contains the
isosurface and so intersection tests
are not needed for the majority of
cells. Consecutively, we can skip
several cells, e.g., when far away

from the surface. We formally exploit this observation using an
octree. We precompute a spatial octree datastructure for the entire
distance field grid, where each octree node contains the minimum
distance value φmin inside the node subtree. The root node stores



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 4

signed distance field distance field octree
resolution time memory time memory

1283 1.9 sec 8.2 MB 0.01 sec 16.1 MB
2563 6.8 sec 64.8 MB 0.09 sec 136.8 MB
5123 45.6 sec 518.0 MB 0.65 sec 1.07 GB
10243 347.0 sec 4.1 GB 4.88 sec 8.55 GB

TABLE 1: Computation times and memory for the signed distance
field and the distance field octree constructed from the signed
distance field. Bunny model.

resolution uniform grid traversal octree-accelerated
1283 12.7 sec 12.0 sec
2563 38.8 sec 13.1 sec
5123 97.2 sec 15.4 sec
10243 274.3 sec 21.4 sec

TABLE 2: Computation times using uniform and octree-
accelerated grid traversal. Bunny model.

the minimum of the entire distance field grid, and we continue
partitioning the nodes into 8 octants until reaching the grid cell
size. Note that the minimum distance value φmin must be larger
than the value stored in its parent node. Therefore, in practice, we
construct the octree in a bottom-up manner starting from the grid
cells and proceeding to the root. When a line segment reaches a
new cell, we traverse the octree starting from the root and find
the largest block of cells we can safely skip. If the current sign
flag is positive, then we skip all the cells in a subtree if σ ≤ φmin.
Note that potentially we can also store φmax in each node and skip
the cells if σ ≥ φmax, when the sign flag is negative. However,
in practice, a point is seldom allowed to penetrate deeply into
the object, but instead stays close to the surface, where knowing
φmax does not help. Therefore, in haptic rendering applications, we
choose to preserve memory and do not store φmax. We analyze the
time and memory to compute and store the signed distance fields
and the distance field octree constructed from the signed distance
field in Table 1.

To evaluate the performance speedup from octree, we randomly
sample 106 pairs of points in the distance field box and generate
line segments between them. For each line segment, we execute
continuous collision detection against the zero isosurface of the
signed distance field of the bunny at four different resolutions:
1283,2563,5123,10243. Table 2 shows that with higher resolution,
the computational cost increases almost linearly with resolution
for uniform grid traversal, whereas octree-accelerated grid traver-
sal time increase more slowly. Therefore, our speedup increases
from 1.1× to 12.8× as the distance field resolution increases.

3.3 Intersection Between Point Sphere-Trees and Distance
Fields

In this section, we explain how to perform continuous collision
detection between a collection of points organized into a sphere hi-
erarchy, and the distance field. At each timestep, naive continuous
collision detection could proceed by traversing the points linearly
(point by point). The traversal can be greatly accelerated using a
bounding volume hierarchy. We use the nested bounding sphere
hierarchy presented in [4]. Each node in the hierarchy covers all
the points in its subtree. Our algorithm traverses the hierarchy in
breadth-first order. For each traversed tree node, it needs to find

model #points linear hierarchy
bunny 777 1.8 sec 0.7 sec

china bowl 2,072 3.4 sec 0.3 sec
dragon 437,645 761.2 sec 9.9 sec

TABLE 3: Continuous collision detection computation times
for synthetic randomly sampled rigid body configurations. We
compare linear (point-by-point) traversal vs using a sphere point
hierarchy.

continuous collisions between a bounding sphere and the zero
isosurface (see Figure 4, a). This test is equivalent to forming a
line segment originating at the center of the node and checking
whether it collides with the isosurface Sσ , where σ equals the
radius of the bounding sphere (see Figure 4, b). If there is no
collision between the line segment and Sσ , no point in the subtree
can collide, and the entire subtree can be skipped. Otherwise, all
the children of the node are added to a list for further traversal.
Note that for a non-leaf tree node, we do not need to find the
intersection intervals; we can terminate the check as soon as we
establish that a collision exists.

To verify the performance gain, we compute 10243 signed distance
fields for the bunny, china bowl and dragon models. In the 3×
expanded space of the distance field box, we sampled 1,000 pairs
of random position and orientations for the point-sampled object.
We then perform continuous collision detection against the zero
isosurface. Table 3 shows that point tree traversal gives a 3×-75×
speedup over the point-by-point collision detection.

4 6-DOF HAPTIC RENDERING

In this section, we give two 6-DoF haptic rendering methods
that use our continuous collision detection between signed dis-
tance fields and points: a continuous penalty-based method and a
constraint-based method.

4.1 Continuous Penalty-based Haptic Rendering

We first give a continuous penalty force between points and a
distance field that can be used in conjunction with our continuous
collision detection. Our method was inspired by [9] who investi-
gated triangle vs triangle contact, whereas we address points and
distance fields, and also extend the model to continuous contact
torques, as well as damping forces and torques. The penalty
force F and torque τ vary continuously during the time interval
[tmin, tmax]. The force is non-zero only when d < 0, i.e., point is in
contact. We integrate the net impulse I and angular impulse M as

I =
∫ tmax

tmin

F(t)dt =
n

∑
i=1

∫ t i
max

t i
min

−kd(t)N(t)dt, (3)

M =
∫ tmax

tmin

τ(t)dt =−
n

∑
i=1

∫ t i
max

t i
min

r(t)×
(

kd(t)N(t)
)

dt, (4)

where k > 0 is the contact penalty force stiffness, d(t) is the
penetration depth, N(t) is the point’s outward normal in the world
coordinate system, r(t) is the torque handle at time t and [t i

min, t
i
max]

is the ith contact subinterval. The handle is typically the vector
joining the center of mass and the current point position. Note
that we only get the penetration depth d from the distance field,
while the force direction comes from the normal of the pointshell



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 5

Fig. 4: Continuous collision detection using a sphere hierarchy:
(a) detecting continuous collisions between the bounding sphere
and the zero isosurface, (b) computing intersections of the line
segment with the isosurface Sσ .

object N. Therefore the contact force does not suffer from force
discontinuity even when the point crosses the object’s interior
medial axis. By analogy with Euler integration, the impulse and
angular impulse in Equations 3 and 4 can also be interpreted as the
integral of a constant contact force and torque. Thus, the constant
force and torque are simply the time-averages of the continuous
penalty forces and torques,

F∗ = I/(tmax− tmin), τ
∗ = M/(tmax− tmin). (5)

Similarly, we also integrate the damping impulse and angular
impulse and compute the averaged damping force and torque.

Starting from time tmin, we first integrate the rigid object forward
to tmax under the forces and torques from the previous step.
We then execute continuous collision detection for the linear
trajectory between tmin and tmax and integrate the impulses I and
M using Equations 3 and 4. Using Equations 5, we then obtain
the contact force F∗ and torque τ∗ to be applied during the next
timestep starting at tmax. The time-varying normals and handles
N(t) and r(t) can be obtained either by linear interpolation of the
corresponding values at tmin and tmax (constant velocity during the
timestep) or by an Euler step of the rigid body dynamics forward
from tmin with timestep t − tmin (constant acceleration). Because
continuous collision detection dominates the timestep computation
time, such Euler substepping of the rigid body does not introduce
a significant overhead. We evaluate all integrals numerically using
the midpoint rule, with N = 5 subintervals.

We now apply our continuous penalty method to 6-DoF haptic
rendering. In haptic rendering, the penalty forces and torques
are typically not rendered directly to the user (a.k.a, ”direct
rendering”) [42], [43]. Instead, we connect the simulation position
of the haptic object and the position imposed by the haptic
manipulandum with a 6-DoF spring (virtual coupling [44], [45]).
The virtual coupling force FVC is designed to be linear in displace-
ment between manipulandum position and simulation position
and saturate to some maximum value Fmax

VC , once displacement
reaches a certain value xmax [33], [46]. The xmax typically cor-
responds to shallow penetrations, such as half a voxel, and we
have Fmax

VC = kxmax. Virtual coupling helps decrease penetrations,
improves the simulation stability and enables a better control of
the rendered stiffness. We use admittance mode of our Haption
haptic device, and implicit integration [21], [33] for improved
haptic rendering stability. At each haptic cycle, we read the forces
and torques from the device. We use them to implicitly timestep

rigid body dynamics of both the manipulandum and the simulation
object, subject to the virtual coupling and the contact forces and
torques, and their 6× 6 gradients [21], [33]. We calculate the
contact force and torque gradients [21] at the beginning of the
timestep. The new position and velocity of the manipulandum
object are sent to the device. Note that the timestep in haptic
simulations is very short (0.001s in our work), and the point can
therefore only move at most a few distance field cells in one
timestep. This effect somewhat negates the gain of employing the
octree acceleration strategy. Therefore, in contrast to simulations
running at graphics rates, in haptic rendering applications we
prefer to keep only the leaf nodes of the distance field octree, i.e.,
the minimum distance inside each distance field cell. At run-time,
we trace the point trajectory cell by cell. Such a strategy saves
about 50% of the octree memory cost, while still accelerating the
cell traversal about 1.5×. Using the full octree hierarchy for haptic
rendering slows down the performance by 2−3× in our examples.
This is due to the extra computations to determine the maximum
block that the cell traversal can skip. In most cases at haptic rates,
only a single grid cell can be skipped.

4.2 Constraint-based Haptic Rendering

We also use our continuous collision detection in a 6-DoF
constraint-based method for haptic rendering of rigid bodies, by
building upon Ortega’s method [10]. Instead of modeling the rigid
bodies as triangle surface meshes, we model one object as a
pointshell object and represent the other one implicitly using a
signed distance field, similar to [4]. The haptic device object (also
called the manipulandum object) is coupled with a “God” object
that is constrained to stay on the surface of the other object. We
run constraint-based quasi-static haptic simulation, implying the
velocity of the God object is zero at all times. At each haptic
cycle, given the current God object configuration xs ∈ R6 and the
manipulandum object configuration xh ∈R6 read from the device,
we first compute an unconstrained acceleration au ∈ R6 for the
God object as

au = ks(xh− xs), (6)

where ks is a coupling constant (we use ks = 0.5 in our examples).
The acceleration ac of the God object has to follow the non-
penetration constraint on each contact point k, 1≤ k ≤ m :

aT
Gnk +α

T (rk×nk)≤ 0, (7)

where m is the number of contact points, and nk and rk are the
inward contact normal and handle of the contact point k. Quantity
ac = (aG,α) consists of the linear acceleration aG and the angular
acceleration α. We concatenate the m constraints into a matrix
form as Ja ≤ 0, for matrix J ∈ Rm×6. Note that different from
penalty methods which always use the normals of the points, here
we choose to use the normals of the static object which can be
modeled either as distance field or pointshell (Figure 5). If the
static object is modeled as a distance field, then the contact normal
will just be the normalized gradient of the distance field. The
discontinuity of the gradient at the medial axis can cause stability
problem for penalty-based methods. However, since penetrations
are not allowed in the constraint-based method, the gradient
discontinuity is not an issue. The constrained acceleration is ob-
tained by minimizing the kinetic distance ‖ac−au‖M between the
constrained acceleration ac and unconstrained acceleration au over
the feasible set {a | Ja≤ 0}, where M ∈ R6×6 is a block diagonal



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 6

Fig. 5: Normal selection. If we choose to use the normals of the
pointshell (here the green peg), then the rotated contact normal at
configuration 2 can cause the object to penetrate into the ground.
Using the contact normal of the static object, i.e., the ground,
prevents the penetration.

matrix with the mass and inertia matrix blocks. We solve the
quadratic programming problem using the library qpOASES [47].
Next, the tentative final configuration is obtained by one explicit
symplectic Euler step [48] of the God object using the constrained
acceleration. We then perform our continuous collision detection
between the pointshell and the distance object. If the trajectory
is free of new contacts, we move the God object to the final
configuration. However, if continuous collision detection detects
contact, we only move the God object to the earliest contact time
tc. This algorithm is theoretically correct if the computation was
performed with infinite precision. With floating point arithmetic,
however, special care needs to be taken. For example, if a block is
in contact with a plane, then, the block can never slide tangentially
on the plane, as it is in contact already at tc = 0s. The algorithm
will always find contact at tc = 0 and the God object will get
stuck in the contact position forever. The reference [10] does not
specify how such an issue is remedied. Our solution is as follows.
When we perform continuous collision detection, we ignore all
the contact points detected in the last timestep. After we move
the God object to tc, we perform discrete collision detection on
the disabled points. If they are still in contact, we add them to
the contact set. We then render the constraint force and torque
Fc = khM(ac−au) to the haptic device.

The haptic rendering requires high force update rates, typically
1,000 Hz. However, the continuous collision detection and the
quadratic programming solver can potentially cause a lower update
rate. Therefore, similarly to [10], we divide our algorithm in two
asynchronous loops. We run our examples in admittance mode. In
the haptic loop, we read the device force and torque and combine
it with the constraint force and torque −Fc from the simulation
cycle to compute the new manipulandum position and velocity
based on symplectic Euler integration and then send them to the
device. The haptic loop is executed at a fixed rate of 1,000 Hz. The
simulation cycle executes the QP solver and continuous collision
detection, and sends the computed constraint force and torque to
the haptic loop. The frequency of the simulation loop depends on
the complexity of the models and the contact configuration; in
practice, it stays well above 1,000 Hz in our examples.

5 RESULTS

Our experiments were performed on an Intel Xeon 2.9GHz CPU
(2x8 cores) machine with 32GB RAM, and an GeForce GTX

Fig. 6: Haptic simulation results. Both continuous penalty-based
and constraint-based haptics rendering work on all of these
examples. Here we only present the results using the constraint-
based method. The continuous penalty method produces similar
results. The three curves of each color correspond to the same
manipulandum trajectory.

680 graphics card with 2GB RAM. We computed the signed
distance fields using an octree-based method using 8 threads [49].
Table 1 gives the computation times and memory sizes for the
signed distance field and the distance field octree for the bunny
model (777 vertices). The memory sizes of the signed distance
field and distance field octree, as well as the distance field octree



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 7

Fig. 7: Peg insertion. (a) When the size of the peg and hole
matches, both continuous penalty method and constraint-based
method successfully inserts the peg into a size-matched hole. We
intentionally decrease the hole size by offsetting the distance field
with 0.1 voxel size. Constraint-based method reflects the ground
truth that the peg cannot be inserted into the hole. However,
continuous penalty method can still insert the peg in with deeper
penetrations. (b) Continuous penalty method produces many more
contacts and performs slower than constraint-based method.

computation time only depend on the resolution, and scale linearly
with resolution. The computation time of the signed distance field
depends on the complexity of the surface mesh, in addition to
resolution. In our experiments, we always precompute the signed
distance field and load it from a disk file. We construct the distance
field octree at runtime, which only imposes a small additional
computational overhead (Table 1). The points are either set to the
vertices of the object, or precomputed using particle repulsion [4].

We select the distance field resolution by considering both per-
formance and quality. The signed distances for arbitrary query
locations can be approximated in O(1) time, independently of the
geometric complexity and the distance field resolution. However,
our continuous collision detection algorithm still scales sublinearly
with the distance field resolution, due to the differences in grid
traversal (Table 2). High-resolution distance fields lead to high
memory costs and longer distance field computation times (Ta-
ble 1). However, low-resolution distance fields may not represent

Fig. 8: Penetrations due to low-resolution distance field. Thin
wires can not be represented by the 2563 distance field and there-
fore the hydraulic actuator tunnels through the wires. The higher-
resolution (1,0243) distance field presents the wire geometry and
prevents the tunneling artifacts.

small or thin geometric details, leading to penetrations or even
incorrect results (Figure 8). A tradeoff resolution should therefore
be selected in practice.

Haptic Rendering. We also demonstrate our continuous collision
detection algorithm by applying it to haptic rendering, investigat-
ing both constraint-based and penalty-based methods (Figure 6).
Our haptic device is the 6-DoF Haption Virtuose 6D, capable
of rendering both forces and torques. In our first example, we
present the classic ”alpha” path planning puzzle [50], [51]. The
red and blue alphas have identical shapes. The blue alpha (distance
field object, 512× 512× 512) is fixed in space while the red
one (pointshell object, 25,269 sample points) is manipulated
to position inside the loop of blue alpha. Our haptic simulator
correctly finds the path to resolve the puzzle (Figure 6 (a)).
The second example involves one static horse model (distance
field object, 256× 256× 256) and one movable dragon model
(pointshell object, 7,537 sample points). Our simulator permits
smooth sliding over the surface and provides high-quality haptic
display of the geometric details (Figure 6 (b)).

In our third example, we perform a virtual assembly task using
the Boeing 777 landing gear model. The pointshell object is a
hydraulic actuator (3,426 sample points). The goal is to find
the path to install the hydraulic actuator into the bottom of the
static landing gear (distance field object, 1024× 1024× 1024)
(Figure 6 (c)). The constraint-based method with our continuous
collision detection guarantees an interpenetration-free path, even
in the presence of thin features only 2 voxels wide. Due to virtual
coupling saturation, both the discrete and continuous penalty
methods remained limited to a shallow penetration of only half
a voxel, and therefore work well under low-velocity manipulation.
However, tunneling occurs when the manipulandum moves too
fast for penalty method (Figure 12). Under a small number of
contact points, collision detection dominates the computation time.
Therefore, Figure 6 (c) also demonstrates that under a similar
number of contact points, the discrete penalty method is the fastest
whereas the continuous penalty method is a little bit faster than



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 8

Fig. 9: Simulation of bunnies, china bowls and dragons using
continuous collision detection and continuous contact resolution.

constraint-based method in simulation computation.

In our fourth example, we insert a peg (distance field object,
64×64×64) into a hole (pointshell object, 6,691 sample points)
(Figure 7). Both methods can stably position the peg inside the
hole when the sizes of the peg and the hole match well. However,
the continuous penalty method produces many more contacts and
performs slower than the constraint-based method. The continuous
penalty method permits penetrations, albeit smaller than half a
voxel, whereas the constraint-based method ensures that there
are no penetrations. Therefore, when the size of the hole be-
comes smaller than the peg, the constraint-based method correctly
detects that one cannot insert the peg, whereas the continuous
penalty method still indicates that the insertion is possible. The
problem can be alleviated by maintaining a small security dis-
tance beyond the colliding surface, but technically speaking, the
continuous penalty method cannot guarantee that it will discover
an interpenetration-free path. For each contact point, continuous
penalty method needs to integrate the contact force and torque, and
even gradients if implicit integration is applied. In this example,
continuous penalty method produces many more contacts (around
1,000 when the peg is fully inserted) than constraint-based method
(always under 10). Due to a smaller number of contacts, the
constraint-based method runs faster than the continuous penalty
method in this example.

Graphical simulation. We also applied our continuous collision
detection to rigid body graphical simulations. We drop one object
onto another fixed object and compare the performance of point-
by-point continuous collision detection versus using a point tree.
We resolve the collisions between the objects, as well as against
the static ground plane. We report the time for continuous collision
detection between the objects. The ground is represented as a
simple implicit function φ(p) = py, where py is the y coordinate of
point p. Figure 9 gives the simulation results for the bunny, china
bowl, and dragon examples. Table 4 shows that using the point-
tree traversal, we can accelerate continuous collision detection
by 3×-250× . The acceleration becomes more significant when
the number of points increases. Note that in physically based
simulations, objects typically do not overlap with each other

Fig. 10: Stability comparison between the discrete penalty
method and the continuous penalty method. (a) 20 rigid bunnies
are dropped to the ground. Under the same stiffness, continuous
collision detection with continuous forces and torques allows a
3× larger timestep than discrete collision detection with discrete
forces and torques. (b) A peg is manipulated into contact with a
hole by a haptic device. Under the same timestep, the continuous
penalty method allows 2.5× larger stiffness.

because the contact response separates them. In the synthetic
random-sampling strategy (Table 3), however, objects may overlap
severely, with most of the points in contact, which is a situation
where a tree hierarchy cannot help much. Therefore, the speedup
of using the point tree in physically based simulation is typically
much larger than in the synthetic case.

model #points #frames linear hierarchy
bunny 777 2,600 8 sec 2.5 sec

china bowl 2,072 2,000 20.3 sec 4.5 sec
dragon 437,645 1,160 671.6 sec 2.6 sec

TABLE 4: Continuous collision detection computation times
during physically based simulation. We compare linear (point-
by-point) traversal vs using a sphere point hierarchy.

Discussions. Continuous collision detection with continuous
penalty forces and torques improves the simulation stability,
compared to discrete collision detection with discrete forces and
torques. In Figure 10 (a), we drop 20 rigid bunnies onto the
ground using symplectic Euler integrator. Each bunny carries a
pointshell and a signed distance field. The continuous collision
detection and contact computation is performed twice, with each
object assuming either role. Under a fixed stiffness level, the
maximum stable timestep, i.e., the largest timestep for visually
stable simulation, is 3× larger in our continuous penalty method
as compared to the discrete penalty method. We then fixed this
timestep, and decreased the stiffness of the discrete method until



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 9

Fig. 11: Constraint-based method with discrete vs continuous
collision detection. A cylinder (yellow) is moved into contact with
three vertical cylinders (blue). With discrete collision detection,
the yellow cylinder either becomes stuck in deep penetration, or
passes through the three vertical cylinders. Continuous collision
detection correctly resolves the contact by detecting the first
contact with the surface, and constrains the object to the surface.

it became stable. This caused a 2.75× larger maximum penetration
depth for the discrete method compared to our method. We also
made a comparison between the maximum stable timestep for both
methods, under the same stiffness and matching the maximum
penetration depth. Our results demonstrate that our continuous
method has a 2.6× larger maximum stable timestep. In Figure 10
(b), we manipulate the peg into contact with the hole, using the
haptic device with implicit integration in admittance mode. Under
a fixed timestep, the continuous penalty method remains stable
with a 2.5× larger stiffness than the discrete penalty method.

Continuous collision detection is also necessary to prevent deep
penetration and tunneling artifacts in constraint-based haptic ren-
dering. In Figure 11, we replace continuous collision detection in
our constraint-based haptic rendering by only performing discrete
collision detection at the end of the timestep. Discrete collision
detection does not check for the contacts during the timestep.
When the simulation object is moving towards contact with a high
velocity, it can end up in a deep penetration, or even passes through
the obstacle within one timestep. When the simulation object is in
deep penetration, its contacts may have directions spanning most
of the orthogonal plane, which in turn prohibits motion to resolve
contacts, causing the object to be stuck (Figure 11). Therefore,
the constraint-based method with discrete collision detection may
not resolve the contact correctly because the contact normals
are corrupted, or even no contacts are detected. This problem is
more pronounced in the presence of thin geometries. Continuous
collision detection guarantees that no contact is missed and returns
the correct contact normal(s) of the earliest contact(s) along the
trajectory.

Figure 12 compares the penalty-based method to the constraint-
based method. The discrete penalty method does not prevent the
tunneling artifacts, since it only performs collision detection at the
end of the timestep. The continuous penalty method alleviates the
problem since it performs collision detection along the trajectory
and integrates the contact impulse over the time interval. However,
when the obstacle is thin, such as the wire in the landing gear, and

Fig. 12: Comparison between the penalty-based method and
the constraint-based method. Under both discrete and contin-
uous penalty-based method, the hydraulic actuator can tunnel
through the thin wires of the landing gear (shown in red circle).
The constraint-based method, combined with continuous collision
detection, guarantees an interpenetration-free path.

the manipulandum is moving fast, the contact impulse averaged by
the timestep will be too small to enforce an interpenetration-free
path. The constraint-based method, combined with continuous col-
lision detection, prevents the penetration problem by constraining
the simulation object at the first contact site.

Penalty-based methods can produce “false-positive” results,
namely report that a path is possible when in reality it violates
contact. In contrast, the constraint-based method can cause the
manipulandum to become stuck in very complex configurations
(Figure 13), even with continuous collision detection. These are
“false-negative” results, namely reporting that insertion cannot oc-
cur when in reality it can. The contact force and torque directions
can be analyzed under the Gauss map which is displayed as a
unit sphere (circle in 2D). The inequality Ja ≤ 0 in the quadratic
program is feasible only if there exists a plane passing through
the origin such that all the contacts are on one side of the plane.
We found that this condition can become violated in very complex
contact configuration in the presence of tight passages and narrow
clearances. When this happens, the set of permitted accelerations
is empty and the manipulandum becomes stuck, causing a false
negative. Such configurations violate the Ja ≤ 0 condition and
occur because the contacts and their normals are necessarily
sampled discretely on the object (at the points of the point-cloud),
and because the continuous collision detection and the QP solver
operate in finite-precision floating-point arithmetics. In this sense,
penalty-based methods have an advantage in that they “relax”
the strict contact conditions, permitting the simulation to proceed
despite the infeasible constraints. This is similar to how hard
constraints in general physically based simulation (say, between
deformable objects) can cause locking, whereas soft constraints
regularize inconsistent constraints, permitting the simulation or
optimization to still find a reasonable solution.

6 CONCLUSION

We presented an efficient algorithm for continuous collision detec-
tion between points and distance fields, and showed how it be used



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 10

Fig. 13: False negatives with tight contact in the constraint-
based method. A vector from the sphere center to each red and
blue dot represents a single contact force and torque direction,
respectively. (a) A 2-D peg (shown in green) is inserted into a
narrow passage. Before colliding with the top wall, contacts N1
and N2 permit upward insertion, but prohibit downward motion.
Once the peg touches the top wall, it becomes stuck because both
the upward and downward motions are forbidden. (b) We tried
to insert a starter motor into its proper place in the car engine
compartment. Insertion works fine if we offset the distance field
slightly (about 1 mm), permitting a larger tolerance. However,
under a narrower tolerance, the starter motor becomes stuck in a
configuration where both the contact force and torque directions
are distributed too broadly (the Ja≤ 0 condition is infeasible).

with a penalty-based method, and a constraint-based method, for
6-DoF haptic rendering. We described a method for computing
the intersection between a line segment and an implicit surface
defined by a signed distance field. We also demonstrated how
to apply two acceleration techniques: octree-based grid traversal
and the point-tree. We integrated our method with continuous
penalty-based contact, and successfully applied it to rigid body
simulation. Although our octree requires additional memory, it
can be computed quickly and substantially accelerates continuous
collision detection. Our method suffers from the general limitation
of point-sampled collision detection, namely the possibility that
unsampled sharp features may cause deep penetrations. In the
future, we would like to use adaptive distance fields to save the
memory. Another extension would be to apply our algorithm to
non-linear (polynomial) point trajectories, especially for rigid-
body simulation where the linear trajectory assumption may
not hold for large timesteps. We would also like to simulate
deformable distance fields, dynamically update the precomputed
octree data structure, and apply our method to haptic rendering.

ACKNOWLEDGMENTS

This research was sponsored by the National Science Foundation
(CAREER-1055035, IIS-1422869), the Sloan Foundation, the
Okawa Foundation, and USC Annenberg Graduate Fellowship to
Hongyi Xu.

REFERENCES

[1] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six degree-of-freedom
haptic rendering using voxel sampling,” in Proc. of ACM SIGGRAPH 99.
ACM, 1999, pp. 401–408.

[2] M. Renz, C. Preusche, M. Pötke, H.-P. Kriegel, and G. Hirzinger, “Stable
haptic interaction with virtual environments using an adapted voxmap-
pointshell algorithm,” in Proc. of Eurohaptics, 2001, pp. 149–154.

[3] W. McNeely, K. Puterbaugh, and J. Troy, “Voxel-Based 6-DOF Haptic
Rendering Improvements,” Haptics-e, vol. 3, no. 7, 2006.

[4] J. Barbič and D. L. James, “Six-dof haptic rendering of contact between
geometrically complex reduced deformable models,” IEEE Transactions
on Haptics, vol. 1, no. 1, pp. 39–52, 2008.

[5] M. Sagardia, T. Hulin, C. Preusche, and G. Hirzinger, “Improvements
of the voxmap-pointshell algorithm-fast generation of haptic data-
structures,” in 53rd IWK-Internationales Wissenschaftliches Kolloquium,
Ilmenau, Germany, 2008.

[6] H. Xu and J. Barbič, “Adaptive 6-dof haptic contact stiffness using the
gauss map,” IEEE Transactions on Haptics, 2016, accepted for final
publication.

[7] M. Jones, J. Bærentzen, and M. Sramek, “3D distance fields: a survey
of techniques and applications,” IEEE Trans. on Visualization and Com-
puter Graphics, vol. 12, no. 4, pp. 581–599, 2006.

[8] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino, “Collision Detection for Deformable Objects,”
Computer Graphics Forum, vol. 24, no. 1, pp. 61–81, 2005.

[9] M. Tang, D. Manocha, M. A. Otaduy, and R. Tong, “Continuous penalty
forces,” ACM Trans. Graph., vol. 31, no. 4, pp. 107:1–107:9, 2012.

[10] M. Ortega, S. Redon, and S. Coquillart, “A six degree-of-freedom god-
object method for haptic display of rigid bodies with surface properties,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 13,
no. 3, pp. 458–469, May 2007.

[11] R. Bridson, R. Fedkiw, and J. Anderson, “Robust Treatment of Collisions,
Contact, and Friction for Cloth Animation,” ACM Trans. on Graphics,
vol. 21, no. 3, pp. 594–603, 2002.

[12] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, “Fast continuous
collision detection for articulated models,” Journal of Computing and
Information Science in Engineering, vol. 5, no. 2, pp. 126–137, 2005.

[13] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha, “Interactive continuous
collision detection between deformable models using connectivity-based
culling,” IEEE Trans. on Visualization and Computer Graphics, vol. 15,
pp. 544–557, 2009.

[14] M. Tang, D. Manocha, and R. Tong, “Fast continuous collision detec-
tion using deforming non-penetration filters,” in Proc. ACM Symp. on
Interactive 3D Graphics and Games (I3D), 2010, pp. 7–13.

[15] T. Brochu, E. Edwards, and R. Bridson, “Efficient geometrically exact
continuous collision detection,” ACM Trans. Graph., vol. 31, no. 4, pp.
96:1–96:7, 2012.

[16] J. M. Snyder, A. R. Woodbury, K. Fleischer, B. Currin, and A. H.
Barr, “Interval methods for multi-point collision between time-dependent
curved surfaces,” in Proc. of ACM SIGGRAPH 93, 1993, pp. 321–334.

[17] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision
detection between rigid bodies,” in Computer graphics forum, vol. 21,
no. 3, 2002, pp. 279–287.

[18] X. Provot, “Collision and Self-Collision Handling in Cloth Model Dedi-
cated to Design Garments,” in Graphics Interface, 1997, pp. 177–189.

[19] T. Brochu and R. Bridson, “Numerically robust continuous collision
detection for dynamic explicit surfaces,” University of British Columbia,
Tech. Rep., 2009.

[20] H. Wang, “Defending continuous collision detection against errors,” ACM
Trans. on Graphics (SIGGRAPH 2014), vol. 33, no. 4, 2014.



ACCEPTED TO IEEE TRANS. ON HAPTICS, SEPTEMBER 2016 11

[21] Y. Z. Hongyi Xu and J. Barbič, “Implicit multibody penalty-based
distributed contact,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 9, 2014.

[22] K. Moustakas, “6-dof haptic rendering using distance maps over implicit
representations,” Multimedia Tools and Applications, vol. 75, no. 8, pp.
4543–4557, 2016.

[23] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of Clothing with
Folds and Wrinkles,” in Proc. of the Symp. on Comp. Animation 2003,
2003.

[24] A. Fuhrmann, G. Sobotka, and C. Groß, “Distance fields for rapid
collision detection in physically based modeling,” in Proceedings of
GraphiCon, 2003, pp. 58–65.

[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive
ray tracing for isosurface rendering,” in Proceedings of the conference on
Visualization’98. IEEE Computer Society Press, 1998, pp. 233–238.

[26] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl, “Cell-based first-
hit ray casting,” in Proc. of the Symposium on Data Visualisation.
Eurographics Association, 2002, pp. 77–ff.

[27] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek, “Fast and
accurate ray-voxel intersection techniques for iso-surface ray tracing.” in
Proc. of Virtual Reality, Modeling, and Visualization, vol. 4, 2004, pp.
429–435.

[28] O. Jamriška, “Interactive ray tracing of distance fields,” The 14th Central
European Seminar on Computer Graphics, 2010.

[29] L. Glondu, S. C. Schvartzman, M. Marchal, G. Dumont, and M. A.
Otaduy, “Efficient collision detection for brittle fracture,” in Proc. of
the Symp. on Comp. Animation 2012. Eurographics Association, 2012,
pp. 285–294.

[30] M. Sagardia and T. Hulin, “Fast and accurate distance, penetration, and
collision queries using point-sphere trees and distance fields,” in ACM
SIGGRAPH 2013 Posters, pp. 83:1–83:1.

[31] X. Zhang, D. Wang, Y. Zhang, and J. Xiao, “Configuration-based
optimization for six degree-of-freedom haptic rendering using sphere-
trees,” in IEEE/RSJ Int. Conference on Intelligent Robots and Systems,
2011, pp. 2602–2607.

[32] S. Laycock and A. Day, “A survey of haptic rendering techniques,”
Computer Graphics Forum, vol. 26, pp. 50–65, 2007.

[33] M. A. Otaduy and M. C. Lin, “Stable and Responsive Six-Degree-of-
Freedom Haptic Manipulation Using Implicit Integration,” in Proc. of
the World Haptics Conference, 2005, pp. 247–256.

[34] R. Weller and G. Zachmann, “A unified approach for physically-based
simulations and haptic rendering,” in Proc. of ACM SIGGRAPH Sympo-
sium on Video Games, 2009, pp. 151–159.

[35] C. Zilles and J. Salisbury, “A Constraint-based God-object Method for
Haptics Display,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems. IEEE, 1995, pp. 146–151.

[36] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic Haptic
Rendering of Interacting Deformable Objects in Virtual Environments,”
IEEE Trans. on Vis. and Comp. Graphics, vol. 12, no. 1, pp. 36–47, 2006.

[37] D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai, “Staggered Projec-
tions for Frictional Contact in Multibody Systems,” ACM Transactions
on Graphics, vol. 27, no. 5, pp. 164:1–164:11, 2008.

[38] M. A. Otaduy, R. Tamstorf, D. Steinemann, and M. Gross, “Implicit
contact handling for deformable objects,” in Computer Graphics Forum,
vol. 28, no. 2, 2009, pp. 559–568.

[39] S. Redon, “Fast continuous collision detection and handling for desktop
virtual prototyping,” Virtual Reality, vol. 8, no. 1, pp. 63–70, 2004.

[40] J. Amanatides, A. Woo et al., “A fast voxel traversal algorithm for ray
tracing,” in Proceedings of EUROGRAPHICS, vol. 87, 1987, pp. 3–10.

[41] J. Nathan, Basic Algebra (second edition). Dover, 2009.

[42] D. D. Nelson, D. E. Johnson, and E. Cohen, “Haptic rendering of
surface-to-surface sculpted model interaction,” in ACM SIGGRAPH 2005
Courses, 2005, p. 97.

[43] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, “Six degree-of-
freedom haptic display using incremental and localized computations,”
Presence-Teleoperators and Virtual Environments, vol. 12, no. 3, pp.
277–295, 2003.

[44] J. Colgate, M.C.Stanley, and J.M.Brown, “Issues in the Haptic Display
of Tool Use,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems. IEEE, 1995, pp. 140–145.

[45] R. J. Adams and B. Hannaford, “A Two-Port Framework for the Design
of Unconditionally Stable Haptic Interfaces,” in Proc. of IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems. IEEE, 1998, pp. 1254–1259.

[46] M. Wan and W. A. McNeely, “Quasi-Static Approximation for 6 Degrees-
of-Freedom Haptic Rendering,” in Proc. of IEEE Visualization 2003,
2003, pp. 257–262.

[47] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[48] E. Hairer, C. Lubich, and G. Wanner, “Geometric numerical integration
illustrated by the störmer–verlet method,” Acta Numerica, vol. 12, pp.
399–450, 2003.

[49] H. Xu and J. Barbič, “Signed distance fields for polygon soup meshes,”
in Proc. of the Graphics Interface Conference, 2014, pp. 35–41.

[50] O. B. Bayazit, G. Song, and N. M. Amato, “Enhancing Randomized
Motion Planners: Exploring with Haptic Hints,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2000, pp. 529–536.

[51] J. J. Kuffner, “Effective sampling and distance metrics for 3d rigid body
path planning,” in IEEE Int. Conf. on Robotics and Automation 2004,
April 2004.

Hongyi Xu is a PhD student in computer science
at the University of Southern California. He obtained
his BS degree from Zhejiang University. His research
interests are in computer graphics, physically based
animation, contact and interactive physics.

Jernej Barbič is associate professor of computer
science at USC. In 2011, MIT Technology Review
named him one of the Top 35 Innovators under the
age of 35 in the world (TR35). Jernej’s research in-
terests include nonlinear solid deformation modeling,
model reduction, collision detection and contact, op-
timal control and interactive design of deformations
and animations. He is the author of Vega FEM, an
efficient free C/C++ software physics library for de-
formable object simulation. Jernej is a Sloan Fellow
(2014).


