
1

1

Jernej Barbic

CSCI 420 Computer Graphics
Lecture 5

Viewing and Projection

University of Southern California

Shear Transformation
Camera Positioning
Simple Parallel Projections
Simple Perspective Projections
[Angel, Ch. 5]

2

Reminder: Affine Transformations

•  Given a point [x y z], form homogeneous
coordinates [x y z 1].

•  The transformed point is [x’ y’ z’].

3

Transformation Matrices in OpenGL

•  Transformation matrices in OpenGL are vectors
of 16 values (column-major matrices)

•  In glLoadMatrixf(GLfloat *m);

•  Some books transpose all matrices!

m = {m1, m2, ..., m16} represents

4

Shear Transformations

•  x-shear scales x proportional to y
•  Leaves y and z values fixed

5

Specification via Shear Angle

•  cot(θ) = (x’-x) / y
•  x’ = x + y cot(θ)
•  y’ = y
•  z’ = z

(x,y) (x’,y’)

x

y

y θ = shear angle

θ

x’-x θ

6

Specification via Ratios

•  For example, shear in both x and z direction
•  Leave y fixed
•  Slope α for x-shear, γ for z-shear
•  Solve

•  Yields

2

7

Composing Transformations

•  Let p = A q, and q = B s.

•  Then p = (A B) s .

B A

s q p

AB
matrix multiplication

8

Composing Transformations

•  Fact: Every affine transformation is a
composition of rotations, scalings, and
translations

•  So, how do we compose these to
form an x-shear?

•  Exercise!

9

Outline

•  Shear Transformation
•  Camera Positioning
•  Simple Parallel Projections
•  Simple Perspective Projections

10

Transform Camera = Transform Scene

•  Camera position is identified with a frame
•  Either move and rotate the objects
•  Or move and rotate the camera
•  Initially, camera at origin, pointing in

negative z-direction

11

The Look-At Function

•  Convenient way to position camera
•  gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
•  e = eye point
•  f = focus point
•  u = up vector

f e

u

view plane

f e

u

12

OpenGL code
void display()
{
 glClear (GL_COLOR_BUFFER_BIT |

 GL_DEPTH_BUFFER_BIT);
 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity();

 gluLookAt (ex, ey, ez, fx, fy, fz, ux, uy, uz);

 glTranslatef(x, y, z);
 ...
 renderBunny();

 glutSwapBuffers();
}

3

13

Implementing the Look-At Function

Plan:

1.  Transform world frame to camera frame
–  Compose a rotation R with translation T
–  W = T R

2.  Invert W to obtain viewing transformation V
–  V = W-1 = (T R)-1 = R-1 T-1
–  Derive R, then T, then R-1 T-1

14

World Frame to Camera Frame I

•  Camera points in negative z direction
•  n = (f – e) / |f – e| is unit normal to view plane
•  Therefore, R maps [0 0 -1]T to [nx ny nz]T

f e

u

view plane

n

15

World Frame to Camera Frame II

•  R maps [0,1,0]T to projection of u onto view plane
•  This projection v equals:

–  α = (u · n) / |n| = u · n
–  v0 = u – α n
–  v = v0 / |v0|

f e

u

view plane

n V0

α

16

World Frame to Camera Frame III

•  Set w to be orthogonal to n and v
•  w = n x v
•  (w, v, -n) is right-handed

f e

view plane

n v

w

17

Summary of Rotation

•  gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
•  n = (f – e) / |f – e|
•  v = (u – (u · n) n) / |u – (u · n) n|
•  w = n x v
•  Rotation must map:

–  (1,0,0) to w
–  (0,1,0) to v
–  (0,0,-1) to n

18

World Frame to Camera Frame IV

•  Translation of origin to e = [ex ey ez 1]T

4

19

Camera Frame to Rendering Frame

•  V = W-1 = (T R)-1 = R-1 T-1
•  R is rotation, so R-1 = RT

•  T is translation, so T-1 negates displacement

20

Putting it Together

•  Calculate V = R-1 T-1

•  This is different from book [Angel, Ch. 5.3.2]
•  There, u, v, n are right-handed (here: u, v, -n)

21

Other Viewing Functions

•  Roll (about z), pitch (about x), yaw (about y)

•  Assignment 2 poses a related problem

22

Outline

•  Shear Transformation
•  Camera Positioning
•  Simple Parallel Projections
•  Simple Perspective Projections

23

Projection Matrices

•  Recall geometric pipeline

•  Projection takes 3D to 2D
•  Projections are not invertible
•  Projections are described by a 4x4 matrix
•  Homogenous coordinates crucial
•  Parallel and perspective projections

24

Parallel Projection

•  Project 3D object to 2D via parallel lines
•  The lines are not necessarily orthogonal

to projection plane

source: Wikipedia

5

25

Parallel Projection

•  Problem: objects far away do not appear smaller
•  Can lead to “impossible objects” :

source: Wikipedia Penrose stairs

26

Orthographic Projection

•  A special kind of parallel projection:
projectors perpendicular to projection plane

•  Simple, but not realistic
•  Used in blueprints (multiview projections)

27

Orthographic Projection Matrix

•  Project onto z = 0
•  xp = x, yp = y, zp = 0
•  In homogenous coordinates

28

Perspective

•  Perspective characterized by foreshortening
•  More distant objects appear smaller
•  Parallel lines appear to converge
•  Rudimentary perspective in cave drawings:

Lascaux, France
source: Wikipedia

29

Discovery of Perspective

•  Foundation in geometry (Euclid)

Mural from
Pompeii, Italy

30

Middle Ages

•  Art in the service of religion
•  Perspective abandoned or forgotten

Ottonian manuscript,
ca. 1000

6

31

Renaissance

•  Rediscovery, systematic study of perspective
Filippo Brunelleschi
Florence, 1415

32

Projection (Viewing) in OpenGL

•  Remember: camera is pointing in the negative z
direction

33

Orthographic Viewing in OpenGL

•  glOrtho(xmin, xmax, ymin, ymax, near, far)

zmin = near, zmax = far

34

Perspective Viewing in OpenGL

•  Two interfaces: glFrustum and gluPerspective
•  glFrustum(xmin, xmax, ymin, ymax, near, far);

zmin = near, zmax = far

35

Field of View Interface

•  gluPerspective(fovy, aspectRatio, near, far);
•  near and far as before
•  aspectRatio = w / h
•  Fovy specifies field

of view as
height (y) angle

36

OpenGL code

void reshape(int x, int y)
{
 glViewport(0, 0, x, y);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0);

 glMatrixMode(GL_MODELVIEW);
}

7

37

Perspective Viewing Mathematically

•  d = focal length
•  y/z = yp/d so yp = y/(z/d) = y d / z
•  Note that yp is non-linear in the depth z!

d

38

Exploiting the 4th Dimension

•  Perspective projection is not affine:

•  Idea: exploit homogeneous coordinates

has no solution for M

for arbitrary w ≠ 0

39

Perspective Projection Matrix

•  Use multiple of point

•  Solve

with

40

Projection Algorithm

Input: 3D point (x,y,z) to project

1.  Form [x y z 1]T

2.  Multiply M with [x y z 1]T ; obtaining [X Y Z W]T

3.  Perform perspective division:
X / W, Y / W, Z / W

Output: (X / W, Y / W, Z / W)
(last coordinate will be d)

41

Perspective Division

•  Normalize [x y z w]T to [(x/w) (y/w) (z/w) 1]T

•  Perform perspective division after projection

•  Projection in OpenGL is more complex
(includes clipping)

