
1

1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 8

Splines

 Hermite Splines
 Bezier Splines
 Catmull-Rom Splines
 Other Cubic Splines
 [Angel Ch 12.4-12.12]

2

Roller coaster

•  Next programming assignment involves
creating a 3D roller coaster animation

•  We must model the 3D curve describing the
roller coaster, but how?

3

Modeling Complex Shapes
•  We want to build models of very complicated objects

•  Complexity is achieved
using simple pieces
–  polygons,
–  parametric curves

and surfaces, or
–  implicit curves

and surfaces

•  This lecture:
parametric curves

4

What Do We Need From Curves
in Computer Graphics?

•  Local control of shape
(so that easy to build and modify)

•  Stability
•  Smoothness and continuity
•  Ability to evaluate derivatives
•  Ease of rendering

5

Curve Representations

•  Explicit: y = f(x)
–  Must be a function (single-valued)
–  Big limitation—vertical lines?

•  Parametric: (x,y) = (f(u),g(u))
+  Easy to specify, modify, control
–  Extra “hidden” variable u, the parameter

•  Implicit: f(x,y) = 0
+  y can be a multiple valued function of x
–  Hard to specify, modify, control

bmxy +=2xy =

0222 =−+ ryx

)sin,(cos),(uuyx =

6

Parameterization of a Curve

•  Parameterization of a curve: how a change in u
moves you along a given curve in xyz space.

•  Parameterization is not unique. It can be slow, fast,
with continuous / discontinuous speed, clockwise
(CW) or CCW…

u=0

u=1

u=0.8
u=0.3

u=0 u=1

parameterization

2

7

Polynomial Interpolation
•  An n-th degree polynomial

fits a curve to n+1 points
–  called Lagrange Interpolation
–  result is a curve that is too

wiggly, change to any
control point affects entire
curve (non-local)

–  this method is poor

•  We usually want the curve
to be as smooth as possible
–  minimize the wiggles
–  high-degree polynomials are bad

Lagrange interpolation,
degree=15

source: Wikipedia

8

Splines: Piecewise Polynomials
•  A spline is a piecewise polynomial:

Curve is broken into consecutive
segments, each of which is a
low-degree polynomial interpolating
(passing through) the control points

•  Cubic piecewise polynomials are the
most common:

–  They are the lowest order polynomials that

1.  interpolate two points and

2.  allow the gradient at each point to be defined
(C1 continuity is possible).

–  Piecewise definition gives local control.

–  Higher or lower degrees are possible, of course.

a spline

9

Piecewise Polynomials
•  Spline: many polynomials pieced together
•  Want to make sure they fit together nicely

Continuous in
position

Continuous in
position and
tangent vector

Continuous in
position,
tangent, and
curvature

10

Splines
•  Types of splines:

–  Hermite Splines
–  Bezier Splines
–  Catmull-Rom Splines
–  Natural Cubic Splines
–  B-Splines
–  NURBS

•  Splines can be used to model both curves and surfaces

11

Cubic Curves in 3D

•  Cubic polynomial:
–  p(u) = au3+bu2+cu+d = [u3 u2 u 1] [a b c d]T
–  a,b,c,d are 3-vectors, u is a scalar

•  Three cubic polynomials, one for each coordinate:
–  x(u) = axu3 + bxu2 + cxu + dx
–  y(u) = ayu3 + byu2 + cyu + dy
–  z(u) = azu3 + bzu2 + czu + dz

•  In matrix notation:

•  Or simply: p = [u3 u2 u 1] A

12

Cubic Hermite Splines

We want a way to specify the end points and the
slope at the end points!

3

13

Deriving Hermite Splines

•  Four constraints: value and slope
(in 3-D, position and tangent vector) at
beginning and end of interval [0,1] :
p(0) = p1 = (x1 , y1 , z1)

p(1) = p2 = (x2 , y2 , z2)

p’(0) = p1 = (x1 , y1 , z1)
p’(1) = p2 = (x2 , y2 , z2)

•  Assume cubic form: p(u) = au3 + bu2 + cu + d
•  Four unknowns: a, b, c, d

the user constraints

14

Deriving Hermite Splines

•  Assume cubic form: p(u) = au3 + bu2 + cu + d

p1 = p(0) = d

p2 = p(1) = a + b + c + d

p1 = p’(0) = c

p2 = p’(1) = 3a + 2b + c

•  Linear system: 12 equations for 12 unknowns
(however, can be simplified to 4 equations for 4 unknowns)

•  Unknowns: a, b, c, d (each of a, b, c, d is a 3-vector)

15

Deriving Hermite Splines
 d = p1

 a + b + c + d = p2

 c = p1

3a + 2b + c = p2

Rewrite this 12x12 system
as a 4x4 system:

16

The Cubic Hermite Spline Equation

control matrix
(what the user gets to pick)

basis point on
the spline

•  After inverting the 4x4 matrix, we obtain:

•  This form is typical for splines
– basis matrix and meaning of control matrix change

with the spline type

parameter
vector

17

Every cubic Hermite spline is a linear combination (blend)
of these 4 functions.

4 Basis Functions

Four Basis Functions for Hermite Splines

T

transpose

18

Piecing together Hermite Splines

It's easy to make a multi-segment Hermite spline:
–  each segment is specified by a cubic Hermite curve
–  just specify the position and tangent at each
“joint” (called knot)

–  the pieces fit together with matched positions and first
derivatives

–  gives C1 continuity

4

19

Hermite Splines in Adobe Illustrator

20

Bezier Splines
•  Variant of the Hermite spline
•  Instead of endpoints and tangents, four control points

–  points P1 and P4 are on the curve
–  points P2 and P3 are off the curve
–  p(0) = P1, p(1) = P4,
–  p'(0) = 3(P2-P1), p'(1) = 3(P4 - P3)

•  Basis matrix is derived from
the Hermite basis (or from scratch)

•  Convex Hull property:
curve contained within the convex
hull of control points

•  Scale factor “3” is chosen to make “velocity”
approximately constant

21

The Bezier Spline Matrix

Bezier
control matrix

Hermite basis Bezier to Hermite

 Bezier basis Bezier
control matrix

22

Bezier Blending Functions

Also known as the order 4, degree 3
Bernstein polynomials

Nonnegative, sum to 1
The entire curve lies inside the

polyhedron bounded by the
control points

23

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.

24

Catmull-Rom Splines
•  Roller-coaster (next programming assignment)
•  With Hermite splines, the designer must arrange for consecutive

tangents to be collinear, to get C1 continuity. Similar for Bezier.
This gets tedious.

•  Catmull-Rom: an interpolating cubic spline with built-in C1 continuity.
•  Compared to Hermite/Bezier: fewer control points required,

but less freedom.

Catmull-Rom spline

5

25

Constructing the Catmull-Rom Spline
Suppose we are given n control points in 3-D: p1, p2, …, pn.

For a Catmull-Rom spline, we set the tangent at pi to
s*(pi+1 – pi-1) for i=2, ..., n-1, for some s (often s=0.5)

s is tension parameter: determines the magnitude (but not direction!) of
the tangent vector at point pi

What about endpoint tangents? Use extra control points p0, pn+1 .

Now we have positions and tangents at each knot. This is a Hermite
specification. Now, just use Hermite formulas to derive the spline.

Note: curve between pi and pi+1 is completely determined
by pi-1, pi, pi+1, pi+2 . 26

Catmull-Rom Spline Matrix

•  Derived in way similar to Hermite and Bezier
•  Parameter s is typically set to s=1/2.

control matrix basis

27

Splines with More Continuity?
•  So far, only C1 continuity.
•  How could we get C2 continuity at control points?

•  Possible answers:
–  Use higher degree polynomials

degree 4 = quartic, degree 5 = quintic, … but these get
computationally expensive, and sometimes wiggly

–  Give up local control  natural cubic splines
A change to any control point affects the entire curve

–  Give up interpolation  cubic B-splines
Curve goes near, but not through, the control points

28

Comparison of Basic Cubic Splines

Type Local Control Continuity Interpolation

Hermite YES C1 YES
Bezier YES C1 YES
Catmull-Rom YES C1 YES
Natural NO C2 YES
B-Splines YES C2 NO

Summary:

Cannot get C2, interpolation and local control with cubics

29

Natural Cubic Splines
•  If you want 2nd derivatives at joints to match up, the

resulting curves are called natural cubic splines

•  It’s a simple computation to solve for the cubics'
coefficients. (See Numerical Recipes in C book for
code.)

•  Finding all the right weights is a global calculation
(solve tridiagonal linear system)

30

B-Splines
•  Give up interpolation

–  the curve passes near the control points

–  best generated with interactive placement (because
it’s hard to guess where the curve will go)

•  Curve obeys the convex hull property
•  C2 continuity and local control are good

compensation for loss of interpolation

6

31

B-Spline Basis
•  We always need 3 more control points

than the number of spline segments

32

Other Common Types of Splines

•  Non-uniform Splines

•  Non-Uniform Rational Cubic curves
(NURBS)

•  NURBS are very popular and used in
many commercial packages

33

How to Draw Spline Curves
•  Basis matrix equation allows same code

to draw any spline type
•  Method 1: brute force

–  Calculate the coefficients
–  For each cubic segment, vary u from 0 to 1 (fixed step size)
–  Plug in u value, matrix multiply to compute position on curve
–  Draw line segment from last position to current position

•  What’s wrong with this approach?
–  Draws in even steps of u
–  Even steps of u does not mean even steps of x
–  Line length will vary over the curve
–  Want to bound line length

»  too long: curve looks jagged
»  too short: curve is slow to draw

34

Drawing Splines, 2

•  Method 2: recursive subdivision - vary step size to draw short lines

Subdivide(u0,u1,maxlinelength)
umid = (u0 + u1)/2
x0 = F(u0)
x1 = F(u1)
if |x1 - x0| > maxlinelength
 Subdivide(u0,umid,maxlinelength)
 Subdivide(umid,u1,maxlinelength)

else drawline(x0,x1)

•  Variant on Method 2 - subdivide based on curvature

–  replace condition in “if” statement with straightness criterion
–  draws fewer lines in flatter regions of the curve

35

Summary

•  Piecewise cubic is generally sufficient
•  Define conditions on the curves and their continuity

•  Most important:
–  basic curve properties

(what are the conditions, controls, and properties for each spline type)
–  generic matrix formula for uniform cubic splines p(u) = u B G
–  given a definition, derive a basis matrix

(do not memorize the matrices themselves)

