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CSCI 420 Computer Graphics 
Lecture 8 

Splines 

   Hermite Splines 
   Bezier Splines 
   Catmull-Rom Splines 
   Other Cubic Splines  
   [Angel Ch 12.4-12.12] 
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Roller coaster 

•  Next programming assignment involves 
creating a 3D roller coaster animation 

•  We must model the 3D curve describing the 
roller coaster, but how? 
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Modeling Complex Shapes 
•  We want to build models of very complicated objects 

•  Complexity is achieved 
using simple pieces 
–  polygons,  
–  parametric curves 

and surfaces, or 
–  implicit curves  

and surfaces 

•  This lecture:  
parametric curves 
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What Do We Need From Curves 
in Computer Graphics? 

•  Local control of shape  
(so that easy to build and modify) 

•  Stability 
•  Smoothness and continuity 
•  Ability to evaluate derivatives 
•  Ease of rendering 
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Curve Representations 

•  Explicit:  y = f(x) 
–  Must be a function (single-valued) 
–  Big limitation—vertical lines? 

•  Parametric:  (x,y) = (f(u),g(u)) 
+  Easy to specify, modify, control 
–  Extra “hidden” variable u, the parameter 

•  Implicit:  f(x,y) = 0 
+  y can be a multiple valued function of x 
–  Hard to specify, modify, control 
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Parameterization of a Curve 

•  Parameterization of a curve: how a change in u 
moves you along a given curve in xyz space. 

•  Parameterization is not unique. It can be slow, fast, 
with continuous / discontinuous speed, clockwise 
(CW) or CCW… 

u=0 

u=1 

u=0.8 
u=0.3 

u=0 u=1 

parameterization 



2 

7 

Polynomial Interpolation 
•  An n-th degree polynomial  

fits a curve to n+1 points 
–  called Lagrange Interpolation 
–  result is a curve that is too  

wiggly, change to any  
control point affects entire  
curve (non-local)  

–  this method is poor 

•  We usually want the curve  
to be as smooth as possible 
–  minimize the wiggles 
–  high-degree polynomials are bad 

Lagrange interpolation, 
degree=15 

source: Wikipedia 
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Splines: Piecewise Polynomials 
•  A spline is a piecewise polynomial:  

Curve is broken into consecutive 
segments, each of which is a  
low-degree polynomial interpolating  
(passing through) the control points 

•  Cubic piecewise polynomials are the  
most common: 

–  They are the lowest order polynomials that  

1.  interpolate two points and  

2.  allow the gradient at each point to be defined 
(C1 continuity is possible). 

–  Piecewise definition gives local control. 

–  Higher or lower degrees are possible, of course. 

a spline 
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Piecewise Polynomials 
•  Spline:  many polynomials pieced together 
•  Want to make sure they fit together nicely 

Continuous in 
position 

Continuous in 
position and 
tangent vector 

Continuous in 
position, 
tangent, and 
curvature 
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Splines 
•  Types of splines: 

–  Hermite Splines 
–  Bezier Splines 
–  Catmull-Rom Splines 
–  Natural Cubic Splines 
–  B-Splines 
–  NURBS 

•  Splines can be used to model both curves and surfaces 
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Cubic Curves in 3D 

•  Cubic polynomial: 
–  p(u) = au3+bu2+cu+d = [u3  u2  u  1] [a  b  c  d]T 
–  a,b,c,d are 3-vectors, u is a scalar 

•  Three cubic polynomials, one for each coordinate: 
–  x(u) = axu3 + bxu2 + cxu + dx 
–  y(u) = ayu3 + byu2 + cyu + dy 
–  z(u) = azu3 + bzu2 + czu + dz 

•  In matrix notation: 

•  Or simply:       p = [u3 u2 u 1] A 
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Cubic Hermite Splines 

We want a way to specify the end points and the 
slope at the end points! 
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Deriving Hermite Splines 

•  Four constraints: value and slope  
(in 3-D, position and tangent vector) at 
beginning and end of interval [0,1] : 
p(0) = p1 = (x1 , y1 , z1) 

p(1) = p2 = (x2 , y2 , z2) 

p’(0) = p1 = (x1 , y1 , z1) 
p’(1) = p2 = (x2 , y2 , z2) 

•  Assume cubic form: p(u) = au3 + bu2 + cu + d 
•  Four unknowns: a, b, c, d 

the user constraints 
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Deriving Hermite Splines 

•  Assume cubic form: p(u) = au3 + bu2 + cu + d 

p1 = p(0) = d 

p2 = p(1) = a + b + c + d 

p1 = p’(0) = c 

p2 = p’(1) = 3a + 2b + c 

•  Linear system: 12 equations for 12 unknowns 
(however, can be simplified to 4 equations for 4 unknowns) 

•  Unknowns: a, b, c, d (each of a, b, c, d is a 3-vector) 
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Deriving Hermite Splines 
                       d = p1 

  a +   b + c + d = p2 

                c       = p1 

3a + 2b + c       = p2 

Rewrite this 12x12 system 
as a 4x4 system: 
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The Cubic Hermite Spline Equation 

control matrix 
(what the user gets to pick) 

basis point on 
the spline 

•  After inverting the 4x4 matrix, we obtain: 

•  This form is typical for splines 
– basis matrix and meaning of control matrix change 

with the spline type 

parameter 
vector 
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Every cubic Hermite spline is a linear combination (blend) 
of these 4 functions. 

4 Basis Functions 

Four Basis Functions for Hermite Splines 

T 

transpose 
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Piecing together Hermite Splines 

It's easy to make a multi-segment Hermite spline: 
–  each segment is specified by a cubic Hermite curve 
–  just specify the position and tangent at each 
“joint” (called knot) 

–  the pieces fit together with matched positions and first 
derivatives 

–  gives C1 continuity 
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Hermite Splines in Adobe Illustrator 
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Bezier Splines 
•  Variant of the Hermite spline 
•  Instead of endpoints and tangents, four control points 

–  points P1 and P4 are on the curve 
–  points P2 and P3 are off the curve 
–  p(0) = P1, p(1) = P4, 
–  p'(0) = 3(P2-P1), p'(1) = 3(P4 - P3) 

•  Basis matrix is derived from  
the Hermite basis (or from scratch) 

•  Convex Hull property: 
curve contained within the convex  
hull of control points  

•  Scale factor “3” is chosen to make “velocity” 
approximately constant 
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The Bezier Spline Matrix 

Bezier 
control matrix 

Hermite basis Bezier to Hermite 

 Bezier basis Bezier 
control matrix 
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Bezier Blending Functions 

Also known as the order 4, degree 3 
Bernstein polynomials 

Nonnegative, sum to 1 
The entire curve lies inside the 

polyhedron bounded by the 
control points 
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DeCasteljau Construction 

Efficient algorithm to evaluate Bezier splines. 
Similar to Horner rule for polynomials. 
Can be extended to interpolations of 3D rotations. 
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Catmull-Rom Splines 
•  Roller-coaster (next programming assignment) 
•  With Hermite splines, the designer must arrange for consecutive 

tangents to be collinear, to get C1 continuity. Similar for Bezier.  
This gets tedious. 

•  Catmull-Rom: an interpolating cubic spline with built-in C1 continuity. 
•  Compared to Hermite/Bezier: fewer control points required,  

but less freedom. 

Catmull-Rom spline 
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Constructing the Catmull-Rom Spline 
Suppose we are given n control points in 3-D: p1, p2, …, pn. 

For a Catmull-Rom spline, we set the tangent at pi to  
s*(pi+1 – pi-1) for i=2, ..., n-1, for some s (often s=0.5) 

s is tension parameter: determines the magnitude (but not direction!) of 
the tangent vector at point pi  

What about endpoint tangents? Use extra control points p0, pn+1 . 

Now we have positions and tangents at each knot. This is a Hermite 
specification. Now, just use Hermite formulas to derive the spline. 

Note: curve between pi and pi+1 is completely determined  
by pi-1, pi, pi+1, pi+2 . 26 

Catmull-Rom Spline Matrix 

•  Derived in way similar to Hermite and Bezier 
•  Parameter s is typically set to s=1/2. 

control matrix  basis 
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Splines with More Continuity? 
•  So far, only C1 continuity. 
•  How could we get C2 continuity at control points? 

•  Possible answers: 
–  Use higher degree polynomials 

degree 4 = quartic, degree 5 = quintic, … but these get 
computationally expensive, and sometimes wiggly 

–  Give up local control    natural cubic splines 
A change to any control point affects the entire curve 

–  Give up interpolation    cubic B-splines 
Curve goes near, but not through, the control points 

28 

Comparison of Basic Cubic Splines 

Type   Local Control      Continuity      Interpolation 

Hermite      YES   C1   YES 
Bezier      YES    C1   YES 
Catmull-Rom     YES     C1   YES 
Natural      NO   C2   YES 
B-Splines      YES   C2   NO 

Summary: 

Cannot get C2, interpolation and local control with cubics 
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Natural Cubic Splines 
•  If you want 2nd derivatives at joints to match up, the 

resulting curves are called natural cubic splines  

•  It’s a simple computation to solve for the cubics' 
coefficients.  (See Numerical Recipes in C book for 
code.) 

•  Finding all the right weights is a global calculation 
(solve tridiagonal linear system) 
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B-Splines 
•  Give up interpolation 

–  the curve passes near the control points 

–  best generated with interactive placement (because 
it’s hard to guess where the curve will go) 

•  Curve obeys the convex hull property 
•  C2 continuity and local control are good 

compensation for loss of interpolation 
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B-Spline Basis 
•  We always need 3 more control points  

than the number of spline segments 
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Other Common Types of Splines 

•  Non-uniform Splines 

•  Non-Uniform Rational Cubic curves 
(NURBS) 

•  NURBS are very popular and used in 
many commercial packages 
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How to Draw Spline Curves 
•  Basis matrix equation allows same code  

to draw any spline type 
•  Method 1: brute force 

–  Calculate the coefficients 
–  For each cubic segment, vary u from 0 to 1 (fixed step size) 
–  Plug in u value, matrix multiply to compute position on curve 
–  Draw line segment from last position to current position 

•  What’s wrong with this approach? 
–  Draws in even steps of u 
–  Even steps of u does not mean even steps of x 
–  Line length will vary over the curve 
–  Want to bound line length 

»  too long:  curve looks jagged 
»  too short:  curve is slow to draw 
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Drawing Splines, 2 

•  Method 2: recursive subdivision - vary step size to draw short lines 

Subdivide(u0,u1,maxlinelength) 
umid = (u0 + u1)/2 
x0 = F(u0) 
x1 = F(u1) 
if |x1 - x0| > maxlinelength 
 Subdivide(u0,umid,maxlinelength) 
 Subdivide(umid,u1,maxlinelength) 

else drawline(x0,x1) 

•  Variant on Method 2 - subdivide based on curvature 

–  replace condition in “if” statement with straightness criterion 
–  draws fewer lines in flatter regions of the curve 
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Summary 

•  Piecewise cubic is generally sufficient 
•  Define conditions on the curves and their continuity 

•  Most important: 
–  basic curve properties  

(what are the conditions, controls, and properties for each spline type) 
–  generic matrix formula for uniform cubic splines p(u) = u B G 
–  given a definition, derive a basis matrix  

(do not memorize the matrices themselves)  


