

The Normalized Frustum

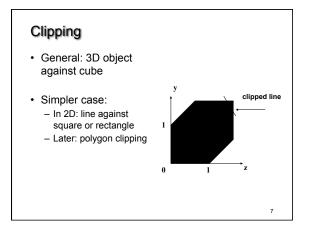
- OpenGL uses $-1 \le x, y, z \le 1$ (others possible)
- · Clip against resulting cube
- Clipping against arbitrary (programmerspecified) planes requires more general algorithms and is more expensive

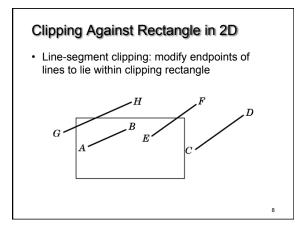
- 1. Camera: From object coordinates to eye coords
- 2. Perspective normalization: to clip coordinates
- 3. Clipping

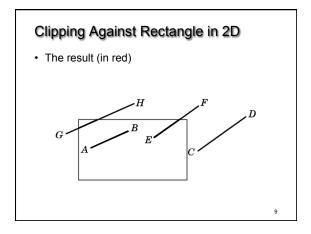
5

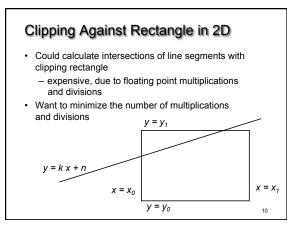
- 4. Perspective division: to normalized device coords.
- 5. Orthographic projection (setting $z_p = 0$)
- 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
 - Solution: pass the correct window aspect ratio to gluPerspective

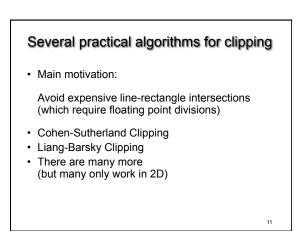
1

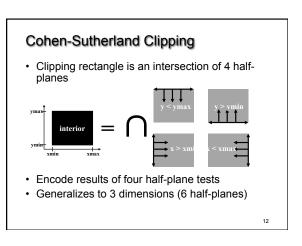


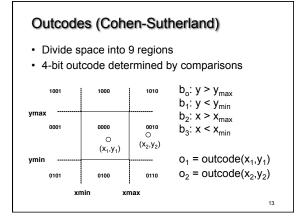


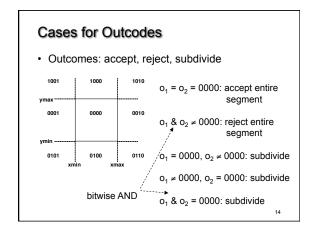








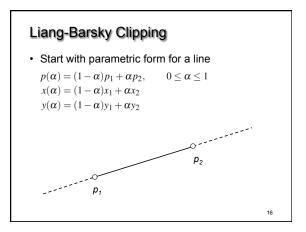


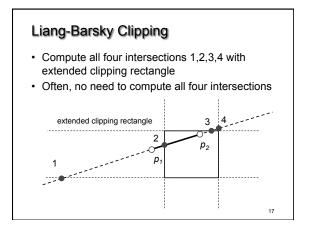


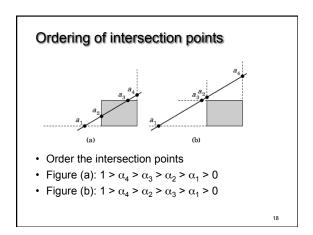
Cohen-Sutherland Subdivision

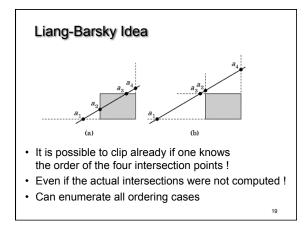
- Pick outside endpoint (o ≠ 0000)
- Pick a crossed edge (o = $b_0b_1b_2b_3$ and $b_k \neq 0$)
- Compute intersection of this line and this edge

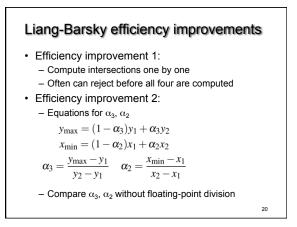
- Replace endpoint with intersection point
- Restart with new line segment
 Outcodes of second point are unchanged
- This algorithms converges











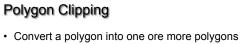
Line-Segment Clipping Assessment

- · Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdivisions) is
 - a drawback
- Liang-Barsky
 - Avoids recursive calls
 - Many cases to consider (tedious, but not expensive)

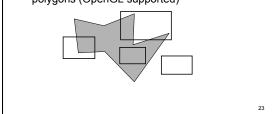
21

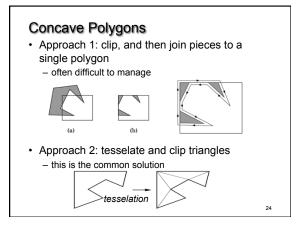
Outline

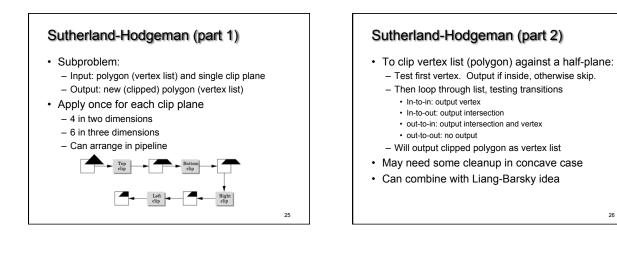
- Line-Segment Clipping
 Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 Sutherland-Hodgeman
- Clipping in Three Dimensions

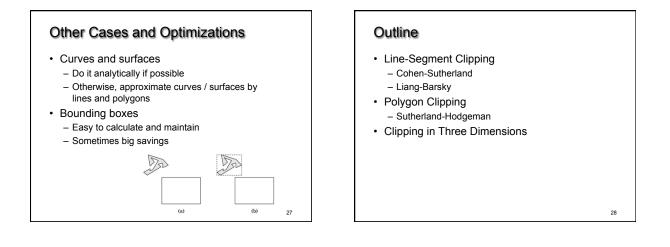


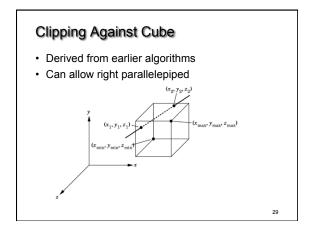
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)

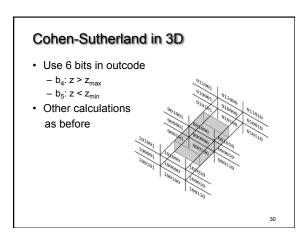












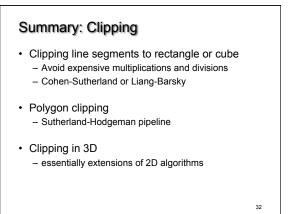
- Add equation $z(\alpha) = (1 \alpha) z_1 + \alpha z_2$
- Solve, for $\boldsymbol{p}_0\,$ in plane and normal $\boldsymbol{n}:$

$$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$$
$$n \cdot (p(\alpha) - p_0) = 0$$

Yields

$$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$

• Optimizations as for Liang-Barsky in 2D



Preview and Announcements

- Scan conversion
- Anti-aliasing
- Other pixel-level operations
- Assignment 2 due a week from today!

33