CSCI 420 Computer Graphics Lecture 2

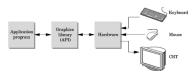
Introduction to OpenGL

OpenGL API Core and Compatibility Profiles Colors [Angel Ch. 2]

Jernej Barbic University of Southern California

What is OpenGL

- A low-level graphics library (API) for 2D and 3D interactive graphics.
- · Descendent of GL (from SGI)
- First version in 1992; now: 4.5 (August 2014)
- Managed by Khronos Group (non-profit consortium)
- API is governed by Architecture Review Board (part of Khronos)


Where is OpenGL used

- CAD
- · Virtual reality
- Scientific visualization
- Flight simulation
- Video games

Graphics library (API)

• Intermediary between applications and graphics hardware

 Other popular APIs: Direct3D (Microsoft)
 OpenGL ES (embedded devices)
 X3D (successor of VRML)

.

OpenGL is cross-platform

- Same code works with little/no modifications
- Windows: default implementation ships with OS Improved OpenGL: Nvidia or AMD drivers
- Linux: Mesa, a freeware implementation Improved OpenGL: Nvidia or AMD drivers
- Mac: ships with the OS

Choice of Programming Language

- OpenGL lives close to the hardware
- · OpenGL is not object-oriented
- OpenGL is not a functional language (as in, ML)
- Use C to expose and exploit low-level details
- · Use C++, Java, ... for toolkits
- Support for C in assignments

OpenGL is cross-platform

Include file (OpenGL Compatibility Profile):

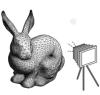
```
#if defined(WIN32) || defined(linux)
    #include <GL/gl.h>
    #include <GL/glu.h>
    #include <GL/glut.h>
#elif defined(__APPLE__)
    #include <OpenGL/gl.h>
    #include <OpenGL/glu.h>
    #include <GLUT/glut.h>
#endif
```

OpenGL is cross-platform

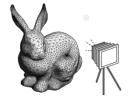
Include file (OpenGL Core Profile):

```
#if defined(WIN32) || defined(linux)
    #include <GL/glew.h>
    #include <GL/glut.h>
#elif defined(__APPLE__)
    #include <OpenGL/gl3.h>
    #include <OpenGL/gl3ext.h>
    #include <GLUT/glut.h>
```

How does OpenGL work


From the programmer's point of view:

- 1. Specify geometric objects
- 2. Describe object properties
 - Color
 - · How objects reflect light



How does OpenGL work (continued)

- 3. Define how objects should be viewed
 - · where is the camera
 - · what type of camera
- 4. Specify light sources
 - where, what kind
- 5. Move camera or objects around for animation

The result

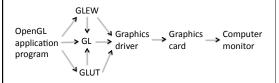
the result

OpenGL is a state machine

State variables: vertex buffers, camera settings, textures, background color, hidden surface removal settings, the current shader program...

These variables (the *state*) then apply to every subsequent drawing command.

They persist until set to new values by the programmer.


Attributes:

color, shading and reflection properties

- · Set before primitives are drawn
- · Remain in effect until changed!

OpenGL Library Organization

- GL (Graphics Library): core graphics capabilities
- GLUT (OpenGL Utility Toolkit): input and windowing
- GLEW (Extension Wrangler): removes OS dependencies
- · GLU (OpenGL Utility Library; compatibility profile only): utilities on top of GL

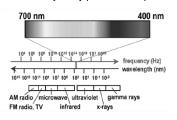
Core vs Compatibility Profile

- · Core Profile:
 - "Modern" OpenGL
 - Introduced in OpenGL 3.2 (August 2009)
 - · Optimized in modern graphics drivers
 - · Shader-based
 - · Used in our homeworks
- Compatibility Profile:
 "Classic" OpenGL

 - Supports the "old" (pre-3.2) OpenGL API
 - Fixed-function (non-shader) pipeline
 Not as optimized as Core Profile

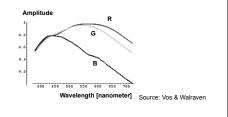
Mixing core and compatibility profiles

· Windows, Linux:

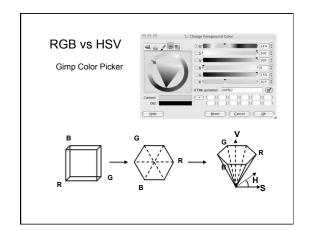

Can mix core and compatibility profile OpenGL commands

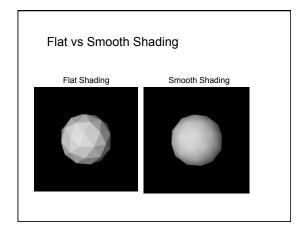
- → can lead to confusion
 - (is the specific OpenGL command optimized?)
- → advantage: more flexible (can re-use old code)
- Mac:

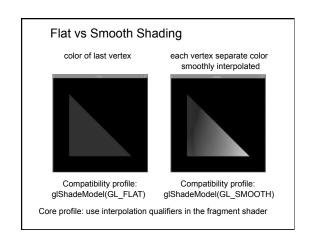
Can only choose one profile (in each application)


Physics of Color

- · Electromagnetic radiation
- · Can see only a tiny piece of the spectrum

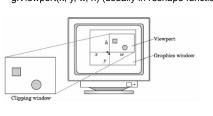

Color Filters


- · Eye can perceive only 3 basic colors
- Computer screens designed accordingly



Color Spaces

- RGB (Red, Green, Blue)
 - Convenient for display
 - Can be unintuitive (3 floats in OpenGL)
- HSV (Hue, Saturation, Value)
 - Hue: what color
 - Saturation: how far away from gray
 - Value: how bright
- · Other formats for movies and printing



Viewport

- Determines clipping in window coordinates
- glViewport(x, y, w, h) (usually in reshape function)

Summary

- 1. OpenGL API
- 2. Core and compatibility profiles
- 3. Colors
- 4. Flat and smooth shading