CSCI 420 Computer Graphics
Lecture 11
Lighting and Shading
Light Sources Phong Illumination Model Normal Vectors [Angel Ch. 5]

Jernej Barbic
University of Southern California

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

Global Illumination

- Ray tracing
- Radiosity
- Photon Mapping
- Follow light rays through a scene
- Accurate, but expensive (off-line)

Raytracing Example

Martin Moeck
Siemens Lighting

Local Illumination

- Approximate model
- Local interaction between
- Color determined only surface, viewer
based on surface normal,
relative camera position
and relative light position
- What effects does this ignore?

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

Normal Vectors

- Must calculate and specify the normal vector - Even in OpenGL!
- Two examples: plane and sphere

Normals of a Plane, Method I

- Method I: given by ax + by +cz + d=0
- Let p_{0} be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: $u \cdot v=0$ if and only if u orthogonal to v
- $n \cdot\left(p-p_{0}\right)=n \cdot p-n \cdot p_{0}=0$
- Consequently $\mathrm{n}_{0}=\left[\begin{array}{lll}a & \mathrm{~b} & \mathrm{c}\end{array}{ }^{\top}\right.$
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$

Normals of a Plane, Method II

- Method II: plane given by $\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}$
- Points must not be collinear
- Recall: uxvorthogonal to u and v
- $\mathrm{n}_{0}=\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right) \times\left(\mathrm{p}_{2}-\mathrm{p}_{0}\right)$
- Order of cross product determines orientation
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$

Normals of Sphere

- Implicit Equation $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
- Vector form: $f(p)=p \cdot p-1=0$
- Normal given by gradient vector

$$
n_{0}=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
2 y \\
2 z
\end{array}\right]=2 p
$$

- Normalize $\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|=2 \mathrm{p} / 2=\mathrm{p}$

Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: $\boldsymbol{I}, \boldsymbol{n}$, and \boldsymbol{r} lie in the same plane
- Assume $|\boldsymbol{\|}|=|\boldsymbol{n}|=1$, guarantee $|r|=1$

$\boldsymbol{I} \cdot \boldsymbol{n}=\cos (\theta)=\boldsymbol{n} \cdot \boldsymbol{r}$
$\boldsymbol{r}=\alpha \boldsymbol{I}+\beta \boldsymbol{n}$
Solution: $\alpha=-1$ and $\beta=2(I \cdot n)$
$r=2(I \cdot n) n-I$

Normals Transformed by Modelview Matrix (proof of $\left(M^{-1}\right)^{T}$ transform)

Point (x, y, z, w) is on a plane in 3D (homogeneous coordinates) if and only if
$a x+b y+c z+d w=0$, or $[a b c d][x y z w]^{\top}=0$.
Now, let's transform the plane by M.
Point (x, y, z, w) is on the transformed plane if and only if $\mathrm{M}^{-1}[\mathrm{xyzw}]^{\top}$ is on the original plane: $\left[\mathrm{abcd} \mathrm{M}^{-1}[\mathrm{x} \text { y z w}]^{\top}=0\right.$.
So, equation of transformed plane is
[a' b' c' d'] [x y z w] ${ }^{\top}=0$, for
$\left[a^{\prime} b^{\prime} c^{\prime} d^{\prime}\right]^{\top}=\left(M^{-1}\right)^{\top}\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$.

Light Sources and Material Properties

- Appearance depends on
- Light sources, their locations and properties
- Material (surface) properties:

- Viewer position

Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in cent

Point Source

- Given by a point p_{0}
- Light emitted equally in all directions
- Intensity decreases with square of distance

$$
I \propto \frac{1}{\left|p-p_{0}\right|^{2}}
$$

Distant Light Source

- Given by a direction vector [x y z]

Spotlight

- Light still emanates from point
- Cut-off by cone determined by angle θ

Global Ambient Light

- Independent of light source
- Lights entire scene
- Computationally inexpensive
- Simply add $\left[G_{R} G_{G} G_{B}\right]$ to every pixel on every object
- Not very interesting on its own. A cheap hack to make the scene brighter.

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and $\mathbf{I}, \mathbf{n}, \mathbf{v}$:

I = unit vector to light source
n = surface normal
$\mathbf{v}=$ unit vector to viewer
$\mathbf{r}=$ reflection of I at \mathbf{p}
(determined by I and \mathbf{n})

Phong Illumination Overview

1. Start with global ambient light $\left[G_{R} G_{G} G_{B}\right]$
2. Add contributions from each light source
3. Clamp the final result to $[0,1]$

- Calculate each color channel ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) separately
- Light source contributions decomposed into
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

$$
I_{a}=k_{a} L_{a}
$$

- Intensity of ambient light is uniform at every point
- Ambient reflection coefficient $k_{a} \geq 0$
- May be different for every surface and $\mathrm{r}, \mathrm{g}, \mathrm{b}$
- Determines reflected fraction of ambient light
- $L_{a}=$ ambient component of light source (can be set to different value for each light source)
- Note: L_{a} is not a physically meaningful quantity

Diffuse Reflection

- Diffuse reflector scatters light

Lambert's Law

Intensity depends on angle of incoming light.

- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient $\mathrm{k}_{\mathrm{d}} \geq 0$
- Angle of incoming light is important

Diffuse Light Intensity Depends On Angle Of Incoming Light

- Recall
$I=$ unit vector to light
$\boldsymbol{n}=$ unit surface normal
$\theta=$ angle to normal
- $\cos \theta=\boldsymbol{I} \cdot \boldsymbol{n}$
- $\mathrm{I}_{\mathrm{d}}=\mathrm{k}_{\mathrm{d}} \mathrm{L}_{\mathrm{d}}(\boldsymbol{I} \cdot \boldsymbol{n})$

- With attenuation:

$$
I_{d}=\frac{k_{d} L_{d}}{a+b q+c q^{2}}(l \cdot n) \quad \begin{aligned}
& \mathrm{q}=\text { distance to light source }, \\
& \mathrm{L}_{d}=\text { diffuse component of light }
\end{aligned}
$$

Specular Reflection

- Specular reflection coefficient $\mathrm{k}_{\mathrm{s}} \geq 0$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Does not give the mirror effect (need other techniques)

specular reflection

specular highlights

Specular Reflection

- Recall
$\boldsymbol{v}=$ unit vector to camera
$\boldsymbol{r}=$ unit reflected vector
$\phi=$ angle between v and r
- $\cos \phi=\boldsymbol{V} \cdot \boldsymbol{r}$

- $\mathrm{I}_{\mathrm{s}}=\mathrm{k}_{\mathrm{s}} \mathrm{L}_{\mathrm{s}}(\cos \phi)^{\alpha}$
- L_{s} is specular component of light
- α is shininess coefficient
- Can add distance term as well

Shininess Coefficient

- $\mathrm{I}_{\mathrm{s}}=\mathrm{k}_{\mathrm{s}} \mathrm{L}_{\mathrm{s}}(\cos \phi)^{\alpha}$
- α is the shininess coefficient

Higher α ives narrower curves

BRDF

- Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Implement in a fragment shader

Lighting properties of a human face were captured and face re-rendered; Institute for Creative Technologies $\quad 36$

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

Polygonal Shading

- Now we know vertex colors
- either via OpenGL lighting,
- or by setting directly via gIColor3f if lighting disabled
- How do we shade the interior of the triangle ?

Polygonal Shading

- Curved surfaces are approximated by polygons
- How do we shade?
- Flat shading
- Interpolative shading
- Gouraud shading
- Phong shading (different from Phong illumination!)

Flat Shading

- Shading constant across polygon
- Core profile: Use interpolation qualifiers in the fragment shader
- Compatibility profile: Enable with gIShadeModel(GL_FLAT);
- Color of last vertex determines interior color
- Only suitable for very small polygons

$$
40
$$

Flat Shading Assessment

- Inexpensive to compute
- Appropriate for objects with flat faces
- Less pleasant for smooth surfaces

Interpolative Shading

- Interpolate color in interior
- Computed during scan conversion (rasterization)
- Core profile: enabled by default
- Compatibiltiy profile: enable with glShadeModel(GL_SMOOTH)
- Much better than flat shading
- More expensive to calculate (but not a problem)
 42

Gouraud Shading

Invented by Henri Gouraud, Univ. of Utah, 1971

- Special case of interpolative shading
- How do we calculate vertex normals for a polygonal surface? Gouraud:

1. average all adjacent face normals
$n=\frac{n_{1}+n_{2}+n_{3}+n_{4}}{\left|n_{1}+n_{2}+n_{3}+n_{4}\right|}$
2. use n for Phong lighting
3. interpolate vertex colors into the interior

- Requires knowledge about which faces share a vertex

Data Structures for Gouraud Shading

- Sometimes vertex normals can be computed directly (e.g. height field with uniform mesh)
- More generally, need data structure for mesh
- Key: which polygons meet at each vertex

Phong Shading ("per-pixel lighting")

 Invented by Bui Tuong Phong, Univ. of Utah, 1973- At each pixel (as opposed to at each vertex) :

1. Interpolate normals (rather than colors)
2. Apply Phong lighting to the interpolated normal

- Significantly more expensive
- Done off-line or in GPU shaders (not supported in OpenGL directly)

Phong Shading Results

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

Phong Shader: Vertex Program

\#version 150
in vec3 position; in vec3 normal; $\}$ out vec3 viewPosition; out vec3 viewNormal; $\}$input vertex position and normal, vertex position and $\left.\begin{array}{l}\text { uniformal, in view-space mat4 modelViewMatrix; } \\ \text { uniform mat4 normalMatrix; } \\ \text { uniform mat4 projectionMatrix; }\end{array}\right\}$these will be passed to fragment program (interpolated by hardware) transformation matrices
48

```
Phong Shader: Vertex Program
void main()
{
    // view-space position of the vertex
    vec4 viewPosition4 = modelViewMatrix * vec4(position, 1.0f);
    viewPosition = viewPosition4.xyz;
    // final position in the normalized device coordinates space
    gl_Position = projectionMatrix * viewPosition4;
    // view-space normal
    viewNormal = normalize((normalMatrix*vec4(normal, 0.0f)).xyz);
}
```

.

VAO code ("normal" shader variable)

During initialization:
glBindVertexArray(vao); // bind the VAO
// bind the VBO "buffer" (must be previously created) glBindBuffer(GL_ARRAY_BUFFER, buffer);
// get location index of the "normal" shader variable
GLuint loc = gIGetAttribLocation(program, "normal"); glEnableVertexAttribArray(loc); // enable the "normal" attribute const void * offset $=\left(\right.$ const void $\left.{ }^{*}\right)$ sizeof(positions); GLsizei stride $=0$; GLboolean normalized = GL_FALSE;
// set the layout of the "normal" attribute data gIVertexAttribPointer(loc, 3, GL_FLOAT, normalized, stride, offset);

Upload the light direction vector to GPU

```
void display()
```

\{
gIClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
openGLMatrix->SetMatrixMode(OpenGL̄Matrix:: \bar{M} odelView);
openGLMatrix->LoadIdentity();
openGLMatrix->LookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
float view[16];
openGLMatrix->GetMatrix(view); // read the view matrix
// get a handle to the program
GLuint program = pipelineProgram->GetProgramHandle();
// get a handle to the viewLightDirection shader variable
GLint h_viewLightDirection =
gIGetŪniformLocation(program, "viewLightDirection");

Upload the light direction vector to GPU

```
float lightDirection[3] = { 0, 1, 0 };// the "Sun" at noon
float viewLightDirection[3]; // light direction in the view space
// the following line is pseudo-code:
viewLightDirection = (view * float4(lightDirection, 0.0)).xyz;
// upload viewLightDirection to the GPU
glUniform3fv(h_viewLightDirection, 1, viewLightDirection);
// continue with model transformations
openGLMatrix->Translate(x, y, z);
renderBunny(); // render, via VAO
glutSwapBuffers()
}

\section*{Upload the normal matrix to GPU}
// in the display function:
// get a handle to the program
GLuint program = pipelineProgram->GetProgramHandle();
// get a handle to the normalMatrix shader variable
GLint h normalMatrix \(=\)
gIGetUniformLocation(program, "normalMatrix");
float \(n[16]\);
matrix->SetMatrixMode(OpenGLMatrix::ModelView); matrix->GetNormalMatrix(n); // get normal matrix
// upload n to the GPU
GLboolean isRowMajor = GL_FALSE;
glUniformMatrix4fv(h_normalMatrix, 1, isRowMajor, n);

\section*{Summary}
- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example```

