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Global Illumination 

•  Ray tracing 

•  Radiosity 

•  Photon Mapping 

•  Follow light rays through a scene 

•  Accurate, but expensive (off-line) 

 Tobias R. Metoc 
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Raytracing Example 

Martin Moeck, 
Siemens Lighting 
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Radiosity Example 

Restaurant Interior. Guillermo Leal, Evolucion Visual 
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Local Illumination 

•  Approximate model  

•  Local interaction between  
light, surface, viewer 

•  Phong model (this lecture):  
fast, supported in OpenGL 

•  GPU shaders 

•  Pixar Renderman (offline) 

n 

light source 

camera 
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Local Illumination 

•  Approximate model  

•  Local interaction between  
light, surface, viewer 

•  Color determined only 
based on surface normal,  
relative camera position  
and relative light position 

•  What effects does this ignore? 

n 
v l 

camera 

light source 
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Normal Vectors 

•  Must calculate and specify the normal vector 
–  Even in OpenGL! 

•  Two examples: plane and sphere 
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Normals of a Plane, Method I 

•  Method I: given by ax + by + cz + d = 0 
•  Let p0 be a known point on the plane 
•  Let p be an arbitrary point on the plane 
•  Recall: u • v = 0 if and only if u orthogonal to v 
•  n • (p – p0) = n • p – n • p0 = 0 

•  Consequently n0 = [a  b  c]T  
•  Normalize to n = n0/|n0| 
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Normals of a Plane, Method II 

•  Method II: plane given by p0, p1, p2 
•  Points must not be collinear 
•  Recall: u x v orthogonal to u and v 

•  n0 = (p1 – p0) x (p2 – p0) 

•  Order of cross product determines orientation 
•  Normalize to n = n0/|n0| 
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Normals of Sphere 

•  Implicit Equation f(x, y, z) = x2 + y2 + z2 –1 = 0 
•  Vector form: f(p) = p • p – 1 = 0 
•  Normal given by gradient vector 

•  Normalize n0/|n0| = 2p/2 = p 
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Reflected Vector 

•  Perfect reflection: angle of incident equals 
angle of reflection 

•  Also: l, n, and r lie in the same plane 
•  Assume |l| = |n| = 1, guarantee |r| = 1 

 Solution: α = -1 and 
 β = 2 (l • n) 

l • n = cos(θ) = n • r 

r = α l + β n 

r = 2 (l • n) n - l 
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Normals Transformed by Modelview Matrix 

Undeformed 

Modelview matrix M (shear in this example)  

Transformed 
with M 

(incorrect) 

Transformed 
with (M-1)T 

(correct) 
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Normals Transformed by Modelview Matrix 

Undeformed 

When M is rotation, M = (M-1)T 

Transformed 
with M = (M-1)T 

(correct) 
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Normals Transformed by Modelview Matrix 
(proof of (M-1)T transform) 
Point (x,y,z,w) is on a plane in 3D (homogeneous 
coordinates) if and only if 
a x + b y + c z + d w = 0,  or [a b c d] [x y z w]T = 0. 

Point (x,y,z,w) is on the transformed plane if and only if 
M-1 [x y z w]T is on the original plane: 
[a b c d] M-1 [x y z w]T = 0. 
So, equation of transformed plane is 
[a’ b’ c’ d’] [x y z w]T = 0, for 
[a’ b’ c’ d’]T = (M-1)T [a b c d]T. 

 Now, let’s transform the plane by M. 
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Light Sources and Material Properties 

•  Appearance depends on 
–  Light sources, their locations and properties 
–  Material (surface) properties: 

–  Viewer position 
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Types of Light Sources 

•  Ambient light: no identifiable source or direction 

•  Point source: given only by point 

•  Distant light: given only by direction 

•  Spotlight: from source in direction  
–  Cut-off angle defines a cone of light 
–  Attenuation function (brighter in center) 
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Point Source 

•  Given by a point p0 

•  Light emitted equally in all directions 

•  Intensity decreases with square of distance 
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Limitations of Point Sources 

•  Shading and shadows inaccurate 
•  Example: penumbra (partial “soft” shadow) 
•  Similar problems with highlights 
•  Compensate with attenuation 

•  Softens lighting 
•  Better with ray tracing 
•  Better with radiosity 

q = distance |p – p0| 
a, b, c constants 



22 

Distant Light Source 

•  Given by a direction vector [x y z] 



23 

Spotlight 

•  Light still emanates from point 
•  Cut-off by cone determined by angle θ 

θ
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Global Ambient Light 

•  Independent of light source 

•  Lights entire scene 

•  Computationally inexpensive 

•  Simply add [GR GG GB] to every pixel on 
every object 

•  Not very interesting on its own. 
A cheap hack to make the scene brighter. 
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Phong Illumination Model 

•  Calculate color for arbitrary point on surface 
•  Compromise between realism and efficiency 
•  Local computation (no visibility calculations) 
•  Basic inputs are material properties and l, n, v: 

l = unit vector to light source 
n = surface normal 
v = unit vector to viewer 
r = reflection of l at p 
  (determined by l and n) 
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Phong Illumination Overview 

1.  Start with global ambient light [GR GG GB]  
2.  Add contributions from each light source 
3.  Clamp the final result to [0, 1] 

•  Calculate each color channel (R,G,B) separately 
•  Light source contributions decomposed into 

–  Ambient reflection 
–  Diffuse reflection 
–  Specular reflection 

•  Based on ambient, diffuse, and specular  
lighting and material properties 
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Ambient Reflection 

   Ia = ka La 

•  Intensity of ambient light is uniform at every point 
•  Ambient reflection coefficient ka ≥ 0 
•  May be different for every surface and r,g,b 
•  Determines reflected fraction of ambient light 
•  La = ambient component of light source 

(can be set to different value for each light source) 
•  Note: La is not a physically meaningful quantity 
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Diffuse Reflection 

•  Diffuse reflector scatters light 
•  Assume equally all direction 
•  Called Lambertian surface 
•  Diffuse reflection coefficient kd ≥ 0 
•  Angle of incoming light is important 



30 

Lambert’s Law 

Intensity depends on angle of incoming light. 
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Diffuse Light Intensity Depends On 
Angle Of Incoming Light 
•  Recall 

l =  unit vector to light 
n = unit surface normal 
θ = angle to normal 

•  cos θ = l • n 

•  Id = kd Ld (l • n)  

•  With attenuation: 
q = distance to light source, 
Ld = diffuse component of light 

n 
l 

θ 



32 

Specular Reflection 

•  Specular reflection coefficient ks ≥ 0 
•  Shiny surfaces have high specular coefficient 
•  Used to model specular highlights 
•  Does not give the mirror effect  

(need other techniques) 

specular reflection specular highlights 
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Specular Reflection 

•  Is = ks Ls (cos φ)α�

•  Ls is specular component of light 
•  α is shininess coefficient 
•  Can add distance term as well 

•  Recall 
v = unit vector to camera 
r = unit reflected vector 
φ = angle between v and r 

•  cos φ = v • r 

n 
l φ

r 

v 
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Shininess Coefficient 

•  Is = ks Ls (cos φ)α 
•  α is the shininess  

coefficient 
Higher α  

gives narrower curves 
φ

(c
os

 φ
)α

low α high α

Source:  
Univ. of Calgary 

α = 1 



35 

Summary of Phong Model 

•  Light components for each color: 
–  Ambient (La), diffuse (Ld), specular (Ls) 

•  Material coefficients for each color: 
–  Ambient (ka), diffuse (kd), specular (ks) 

•  Distance q for surface point from light source 

l = unit vector to light 
n = surface normal 

r = l reflected about n 
v = vector to viewer 
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BRDF 

•  Bidirectional Reflection Distribution Function 
•  Must measure for 
    real materials 
•  Isotropic vs. 
   anisotropic 
•  Mathematically 
   complex 
•  Implement in 
   a fragment shader 

Lighting properties of a human face were  
captured and face re-rendered; 
Institute for Creative Technologies 
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Polygonal Shading 

•  Now we know vertex colors 
–  either via OpenGL lighting,  
–  or by setting directly via glColor3f if lighting disabled 

•  How do we shade the interior of the triangle ? 

? 
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Polygonal Shading 

•  Curved surfaces are approximated by polygons 

•  How do we shade? 
–  Flat shading 
–  Interpolative shading 
–  Gouraud shading 
–  Phong shading (different from Phong illumination!) 
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Flat Shading 
•  Shading constant across polygon 
•  Core profile: Use interpolation qualifiers 

in the fragment shader 
•  Compatibility profile: Enable with 

glShadeModel(GL_FLAT); 
•  Color of last vertex determines interior color 
•  Only suitable for very small polygons 

v0 v1 

v2 
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Flat Shading Assessment 

•  Inexpensive to compute 
•  Appropriate for objects with flat faces 
•  Less pleasant for smooth surfaces 
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Interpolative Shading 
•  Interpolate color in interior 
•  Computed during scan conversion (rasterization) 
•  Core profile: enabled by default 
•  Compatibiltiy profile: enable with 

glShadeModel(GL_SMOOTH); 
•  Much better than flat shading 
•  More expensive to calculate (but not a problem) 
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Gouraud Shading 
Invented by Henri Gouraud, Univ. of Utah, 1971 

•  Special case of interpolative shading 
•  How do we calculate vertex normals for a polygonal 

surface? Gouraud:  
1.  average all adjacent face normals 

2.  use n for Phong lighting 
3.  interpolate vertex colors  

into the interior 

•  Requires knowledge about  
which faces share a vertex 
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Data Structures for Gouraud Shading 

•  Sometimes vertex normals can be computed 
directly (e.g. height field with uniform mesh) 

•  More generally, need data structure for mesh 
•  Key: which polygons meet at each vertex 
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Phong Shading (“per-pixel lighting”) 
Invented by Bui Tuong Phong, Univ. of Utah, 1973

•  At each pixel (as opposed to at each vertex) : 
1.  Interpolate normals (rather than colors) 
2.  Apply Phong lighting to the interpolated normal 

•  Significantly more expensive 

•  Done off-line or in GPU  
shaders (not supported  
in OpenGL directly) 
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Phong Shading Results 

Single light 
Phong Lighting 

Gouraud Shading 

Two lights 
Phong Lighting 

Gouraud Shading 

Two lights 
Phong Lighting 
Phong Shading 

Michael Gold, Nvidia 
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Phong Shader: Vertex Program 
#version 150 

in vec3 position; 
in vec3 normal; 

out vec3 viewPosition; 
out vec3 viewNormal; 

uniform mat4 modelViewMatrix; 
uniform mat4 normalMatrix; 
uniform mat4 projectionMatrix; 

these will be 
passed to  
fragment  
program 
(interpolated by  
hardware) 

transformation matrices 

input vertex position and normal, 
in world-space 

vertex position and  
normal, in view-space 



Phong Shader: Vertex Program 

void main() 
{ 
  // view-space position of the vertex 
  vec4 viewPosition4 = modelViewMatrix * vec4(position, 1.0f); 
  viewPosition = viewPosition4.xyz; 

  // final position in the normalized device coordinates space 
  gl_Position = projectionMatrix * viewPosition4; 
  // view-space normal 
  viewNormal = normalize((normalMatrix*vec4(normal, 0.0f)).xyz); 
} 

49 
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Phong Shader: Fragment Program 
in vec3 viewPosition; 
in vec3 viewNormal; 

out vec4 c; // output color 

uniform vec4 lightAmbient; 
uniform vec4 lightDiffuse; 
uniform vec4 lightSpecular; 
uniform vec3 viewLightDirection; 

uniform vec4 matKa; 
uniform vec4 matKd; 
uniform vec4 matKs; 
uniform float matKsExp; 

n 
l φ

r 

v 

θ 

interpolated 
from vertex  
program 
outputs 

properties of the 
directional light 

properties of the 
mesh material 

In view space 



Phong Shader: Fragment Program 
void main() 
{ 
  // camera is at (0,0,0) after the modelview transformation 
  vec3 eyedir = normalize(vec3(0, 0, 0) - viewPosition); 
  // reflected light direction 
  vec3 reflectDir = -reflect(viewLightDirection, viewNormal);  
  // Phong lighting 
  float kd = max(dot(viewLightDirection, viewNormal), 0.0f); 
  float ks = max(dot(reflectDir, eyedir), 0.0f); 
  // compute the final color 
  c = matKa * lightAmbient + matKd * kd * lightDiffuse + 
            matKs * pow(ks, matKsExp) * lightSpecular; 
} 51 
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VBO Layout: positions and normals 

in vec3 
position 

gg5’|53vs|ff&$|#422|424d|^^3d|aa7y|oarT|J^23|Gr/%|fryu|*xpP 

vtx1 
x 

vtx1 
y 

vtx1 
z 

vtx2 
x 

vtx2 
y 

vtx2 
z 

VBO 

nor1 
x 

nor1 
y 

nor1 
z 

nor2 
x 

nor2 
y 

nor2 
z 

in vec3 
normal 
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VAO code (“normal” shader variable) 
During initialization: 

glBindVertexArray(vao); // bind the VAO 

// bind the VBO “buffer” (must be previously created) 
glBindBuffer(GL_ARRAY_BUFFER, buffer);  

// get location index of the “normal” shader variable 
GLuint loc = glGetAttribLocation(program, “normal”); 
glEnableVertexAttribArray(loc); // enable the “normal” attribute 
const void * offset = (const void*) sizeof(positions);  GLsizei stride = 0; 
GLboolean normalized = GL_FALSE; 
// set the layout of the “normal” attribute data 
glVertexAttribPointer(loc, 3, GL_FLOAT, normalized, stride, offset); 
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Upload the light direction vector to GPU 
void display() 
{ 
  glClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); 
  openGLMatrix->SetMatrixMode(OpenGLMatrix::ModelView); 
  openGLMatrix->LoadIdentity(); 
  openGLMatrix->LookAt(ex, ey, ez,  fx, fy, fz,  ux, uy, uz); 

  float view[16]; 
  openGLMatrix->GetMatrix(view); // read the view matrix 

  // get a handle to the program 
  GLuint program = pipelineProgram->GetProgramHandle(); 
  // get a handle to the viewLightDirection shader variable 
  GLint h_viewLightDirection  =  
    glGetUniformLocation(program, “viewLightDirection”);  
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Upload the light direction vector to GPU 

  float lightDirection[3] = { 0, 1, 0 }; // the “Sun” at noon 
  float viewLightDirection[3]; // light direction in the view space 
  // the following line is pseudo-code: 
  viewLightDirection = (view * float4(lightDirection, 0.0)).xyz; 

  // upload viewLightDirection to the GPU 
  glUniform3fv(h_viewLightDirection, 1, viewLightDirection); 

  // continue with model transformations 
  openGLMatrix->Translate(x, y, z);  
  ... 

  renderBunny(); // render, via VAO 
  glutSwapBuffers(); 
} 
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Upload the normal matrix to GPU 
// in the display function: 

// get a handle to the program 
GLuint program = pipelineProgram->GetProgramHandle(); 

    // get a handle to the normalMatrix shader variable 
 GLint h_normalMatrix =  
  glGetUniformLocation(program, “normalMatrix”);  

float n[16];  
    matrix->SetMatrixMode(OpenGLMatrix::ModelView); 
    matrix->GetNormalMatrix(n); // get normal matrix 

// upload n to the GPU 
GLboolean isRowMajor = GL_FALSE; 
glUniformMatrix4fv(h_normalMatrix, 1, isRowMajor, n); 
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Summary 

•  Global and Local Illumination 
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•  Phong Illumination Model 
•  Polygonal Shading 
•  Example 


