
1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 11

Lighting and Shading

 Light Sources
 Phong Illumination Model
 Normal Vectors
 [Angel Ch. 5]

2

Outline

•  Global and Local Illumination
•  Normal Vectors
•  Light Sources
•  Phong Illumination Model
•  Polygonal Shading
•  Example

3

Global Illumination

•  Ray tracing

•  Radiosity

•  Photon Mapping

•  Follow light rays through a scene

•  Accurate, but expensive (off-line)

 Tobias R. Metoc

4

Raytracing Example

Martin Moeck,
Siemens Lighting

5

Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual

6

Local Illumination

•  Approximate model

•  Local interaction between
light, surface, viewer

•  Phong model (this lecture):
fast, supported in OpenGL

•  GPU shaders

•  Pixar Renderman (offline)

n

light source

camera

7

Local Illumination

•  Approximate model

•  Local interaction between
light, surface, viewer

•  Color determined only
based on surface normal,
relative camera position
and relative light position

•  What effects does this ignore?

n
v l

camera

light source

8

Outline

•  Global and Local Illumination
•  Normal Vectors
•  Light Sources
•  Phong Illumination Model
•  Polygonal Shading
•  Example

9

Normal Vectors

•  Must calculate and specify the normal vector
–  Even in OpenGL!

•  Two examples: plane and sphere

10

Normals of a Plane, Method I

•  Method I: given by ax + by + cz + d = 0
•  Let p0 be a known point on the plane
•  Let p be an arbitrary point on the plane
•  Recall: u • v = 0 if and only if u orthogonal to v
•  n • (p – p0) = n • p – n • p0 = 0

•  Consequently n0 = [a b c]T
•  Normalize to n = n0/|n0|

11

Normals of a Plane, Method II

•  Method II: plane given by p0, p1, p2
•  Points must not be collinear
•  Recall: u x v orthogonal to u and v

•  n0 = (p1 – p0) x (p2 – p0)

•  Order of cross product determines orientation
•  Normalize to n = n0/|n0|

12

Normals of Sphere

•  Implicit Equation f(x, y, z) = x2 + y2 + z2 –1 = 0
•  Vector form: f(p) = p • p – 1 = 0
•  Normal given by gradient vector

•  Normalize n0/|n0| = 2p/2 = p

13

Reflected Vector

•  Perfect reflection: angle of incident equals
angle of reflection

•  Also: l, n, and r lie in the same plane
•  Assume |l| = |n| = 1, guarantee |r| = 1

 Solution: α = -1 and
 β = 2 (l • n)

l • n = cos(θ) = n • r

r = α l + β n

r = 2 (l • n) n - l

14

Normals Transformed by Modelview Matrix

Undeformed

Modelview matrix M (shear in this example)

Transformed
with M

(incorrect)

Transformed
with (M-1)T

(correct)

15

Normals Transformed by Modelview Matrix

Undeformed

When M is rotation, M = (M-1)T

Transformed
with M = (M-1)T

(correct)

16

Normals Transformed by Modelview Matrix
(proof of (M-1)T transform)
Point (x,y,z,w) is on a plane in 3D (homogeneous
coordinates) if and only if
a x + b y + c z + d w = 0, or [a b c d] [x y z w]T = 0.

Point (x,y,z,w) is on the transformed plane if and only if
M-1 [x y z w]T is on the original plane:
[a b c d] M-1 [x y z w]T = 0.
So, equation of transformed plane is
[a’ b’ c’ d’] [x y z w]T = 0, for
[a’ b’ c’ d’]T = (M-1)T [a b c d]T.

 Now, let’s transform the plane by M.

17

Outline

•  Global and Local Illumination
•  Normal Vectors
•  Light Sources
•  Phong Illumination Model
•  Polygonal Shading
•  Example

18

Light Sources and Material Properties

•  Appearance depends on
–  Light sources, their locations and properties
–  Material (surface) properties:

–  Viewer position

19

Types of Light Sources

•  Ambient light: no identifiable source or direction

•  Point source: given only by point

•  Distant light: given only by direction

•  Spotlight: from source in direction
–  Cut-off angle defines a cone of light
–  Attenuation function (brighter in center)

20

Point Source

•  Given by a point p0

•  Light emitted equally in all directions

•  Intensity decreases with square of distance

21

Limitations of Point Sources

•  Shading and shadows inaccurate
•  Example: penumbra (partial “soft” shadow)
•  Similar problems with highlights
•  Compensate with attenuation

•  Softens lighting
•  Better with ray tracing
•  Better with radiosity

q = distance |p – p0|
a, b, c constants

22

Distant Light Source

•  Given by a direction vector [x y z]

23

Spotlight

•  Light still emanates from point
•  Cut-off by cone determined by angle θ

θ

24

Global Ambient Light

•  Independent of light source

•  Lights entire scene

•  Computationally inexpensive

•  Simply add [GR GG GB] to every pixel on
every object

•  Not very interesting on its own.
A cheap hack to make the scene brighter.

25

Outline

•  Global and Local Illumination
•  Normal Vectors
•  Light Sources
•  Phong Illumination Model
•  Polygonal Shading
•  Example

26

Phong Illumination Model

•  Calculate color for arbitrary point on surface
•  Compromise between realism and efficiency
•  Local computation (no visibility calculations)
•  Basic inputs are material properties and l, n, v:

l = unit vector to light source
n = surface normal
v = unit vector to viewer
r = reflection of l at p
 (determined by l and n)

27

Phong Illumination Overview

1.  Start with global ambient light [GR GG GB]
2.  Add contributions from each light source
3.  Clamp the final result to [0, 1]

•  Calculate each color channel (R,G,B) separately
•  Light source contributions decomposed into

–  Ambient reflection
–  Diffuse reflection
–  Specular reflection

•  Based on ambient, diffuse, and specular
lighting and material properties

28

Ambient Reflection

 Ia = ka La

•  Intensity of ambient light is uniform at every point
•  Ambient reflection coefficient ka ≥ 0
•  May be different for every surface and r,g,b
•  Determines reflected fraction of ambient light
•  La = ambient component of light source

(can be set to different value for each light source)
•  Note: La is not a physically meaningful quantity

29

Diffuse Reflection

•  Diffuse reflector scatters light
•  Assume equally all direction
•  Called Lambertian surface
•  Diffuse reflection coefficient kd ≥ 0
•  Angle of incoming light is important

30

Lambert’s Law

Intensity depends on angle of incoming light.

31

Diffuse Light Intensity Depends On
Angle Of Incoming Light
•  Recall

l = unit vector to light
n = unit surface normal
θ = angle to normal

•  cos θ = l • n

•  Id = kd Ld (l • n)

•  With attenuation:
q = distance to light source,
Ld = diffuse component of light

n
l

θ

32

Specular Reflection

•  Specular reflection coefficient ks ≥ 0
•  Shiny surfaces have high specular coefficient
•  Used to model specular highlights
•  Does not give the mirror effect

(need other techniques)

specular reflection specular highlights

33

Specular Reflection

•  Is = ks Ls (cos φ)α�

•  Ls is specular component of light
•  α is shininess coefficient
•  Can add distance term as well

•  Recall
v = unit vector to camera
r = unit reflected vector
φ = angle between v and r

•  cos φ = v • r

n
l φ

r

v

34

Shininess Coefficient

•  Is = ks Ls (cos φ)α
•  α is the shininess

coefficient
Higher α

gives narrower curves
φ

(c
os

 φ
)α

low α high α

Source:
Univ. of Calgary

α = 1

35

Summary of Phong Model

•  Light components for each color:
–  Ambient (La), diffuse (Ld), specular (Ls)

•  Material coefficients for each color:
–  Ambient (ka), diffuse (kd), specular (ks)

•  Distance q for surface point from light source

l = unit vector to light
n = surface normal

r = l reflected about n
v = vector to viewer

36

BRDF

•  Bidirectional Reflection Distribution Function
•  Must measure for
 real materials
•  Isotropic vs.
 anisotropic
•  Mathematically
 complex
•  Implement in
 a fragment shader

Lighting properties of a human face were
captured and face re-rendered;
Institute for Creative Technologies

37

Outline

•  Global and Local Illumination
•  Normal Vectors
•  Light Sources
•  Phong Illumination Model
•  Polygonal Shading
•  Example

38

Polygonal Shading

•  Now we know vertex colors
–  either via OpenGL lighting,
–  or by setting directly via glColor3f if lighting disabled

•  How do we shade the interior of the triangle ?

?

39

Polygonal Shading

•  Curved surfaces are approximated by polygons

•  How do we shade?
–  Flat shading
–  Interpolative shading
–  Gouraud shading
–  Phong shading (different from Phong illumination!)

40

Flat Shading
•  Shading constant across polygon
•  Core profile: Use interpolation qualifiers

in the fragment shader
•  Compatibility profile: Enable with

glShadeModel(GL_FLAT);
•  Color of last vertex determines interior color
•  Only suitable for very small polygons

v0 v1

v2

41

Flat Shading Assessment

•  Inexpensive to compute
•  Appropriate for objects with flat faces
•  Less pleasant for smooth surfaces

42

Interpolative Shading
•  Interpolate color in interior
•  Computed during scan conversion (rasterization)
•  Core profile: enabled by default
•  Compatibiltiy profile: enable with

glShadeModel(GL_SMOOTH);
•  Much better than flat shading
•  More expensive to calculate (but not a problem)

43

Gouraud Shading
Invented by Henri Gouraud, Univ. of Utah, 1971

•  Special case of interpolative shading
•  How do we calculate vertex normals for a polygonal

surface? Gouraud:
1.  average all adjacent face normals

2.  use n for Phong lighting
3.  interpolate vertex colors

into the interior

•  Requires knowledge about
which faces share a vertex

44

Data Structures for Gouraud Shading

•  Sometimes vertex normals can be computed
directly (e.g. height field with uniform mesh)

•  More generally, need data structure for mesh
•  Key: which polygons meet at each vertex

45

Phong Shading (“per-pixel lighting”)
Invented by Bui Tuong Phong, Univ. of Utah, 1973

•  At each pixel (as opposed to at each vertex) :
1.  Interpolate normals (rather than colors)
2.  Apply Phong lighting to the interpolated normal

•  Significantly more expensive

•  Done off-line or in GPU
shaders (not supported
in OpenGL directly)

46

Phong Shading Results

Single light
Phong Lighting

Gouraud Shading

Two lights
Phong Lighting

Gouraud Shading

Two lights
Phong Lighting
Phong Shading

Michael Gold, Nvidia

47

Outline

•  Global and Local Illumination
•  Normal Vectors
•  Light Sources
•  Phong Illumination Model
•  Polygonal Shading
•  Example

48

Phong Shader: Vertex Program
#version 150

in vec3 position;
in vec3 normal;

out vec3 viewPosition;
out vec3 viewNormal;

uniform mat4 modelViewMatrix;
uniform mat4 normalMatrix;
uniform mat4 projectionMatrix;

these will be
passed to
fragment
program
(interpolated by
hardware)

transformation matrices

input vertex position and normal,
in world-space

vertex position and
normal, in view-space

Phong Shader: Vertex Program

void main()
{
 // view-space position of the vertex
 vec4 viewPosition4 = modelViewMatrix * vec4(position, 1.0f);
 viewPosition = viewPosition4.xyz;

 // final position in the normalized device coordinates space
 gl_Position = projectionMatrix * viewPosition4;
 // view-space normal
 viewNormal = normalize((normalMatrix*vec4(normal, 0.0f)).xyz);
}

49

50

Phong Shader: Fragment Program
in vec3 viewPosition;
in vec3 viewNormal;

out vec4 c; // output color

uniform vec4 lightAmbient;
uniform vec4 lightDiffuse;
uniform vec4 lightSpecular;
uniform vec3 viewLightDirection;

uniform vec4 matKa;
uniform vec4 matKd;
uniform vec4 matKs;
uniform float matKsExp;

n
l φ

r

v

θ

interpolated
from vertex
program
outputs

properties of the
directional light

properties of the
mesh material

In view space

Phong Shader: Fragment Program
void main()
{
 // camera is at (0,0,0) after the modelview transformation
 vec3 eyedir = normalize(vec3(0, 0, 0) - viewPosition);
 // reflected light direction
 vec3 reflectDir = -reflect(viewLightDirection, viewNormal);
 // Phong lighting
 float kd = max(dot(viewLightDirection, viewNormal), 0.0f);
 float ks = max(dot(reflectDir, eyedir), 0.0f);
 // compute the final color
 c = matKa * lightAmbient + matKd * kd * lightDiffuse +
 matKs * pow(ks, matKsExp) * lightSpecular;
} 51

52

VBO Layout: positions and normals

in vec3
position

gg5’|53vs|ff&$|#422|424d|^^3d|aa7y|oarT|J^23|Gr/%|fryu|*xpP

vtx1
x

vtx1
y

vtx1
z

vtx2
x

vtx2
y

vtx2
z

VBO

nor1
x

nor1
y

nor1
z

nor2
x

nor2
y

nor2
z

in vec3
normal

53

VAO code (“normal” shader variable)
During initialization:

glBindVertexArray(vao); // bind the VAO

// bind the VBO “buffer” (must be previously created)
glBindBuffer(GL_ARRAY_BUFFER, buffer);

// get location index of the “normal” shader variable
GLuint loc = glGetAttribLocation(program, “normal”);
glEnableVertexAttribArray(loc); // enable the “normal” attribute
const void * offset = (const void*) sizeof(positions); GLsizei stride = 0;
GLboolean normalized = GL_FALSE;
// set the layout of the “normal” attribute data
glVertexAttribPointer(loc, 3, GL_FLOAT, normalized, stride, offset);

54

Upload the light direction vector to GPU
void display()
{
 glClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
 openGLMatrix->SetMatrixMode(OpenGLMatrix::ModelView);
 openGLMatrix->LoadIdentity();
 openGLMatrix->LookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);

 float view[16];
 openGLMatrix->GetMatrix(view); // read the view matrix

 // get a handle to the program
 GLuint program = pipelineProgram->GetProgramHandle();
 // get a handle to the viewLightDirection shader variable
 GLint h_viewLightDirection =
 glGetUniformLocation(program, “viewLightDirection”);

55

Upload the light direction vector to GPU

 float lightDirection[3] = { 0, 1, 0 }; // the “Sun” at noon
 float viewLightDirection[3]; // light direction in the view space
 // the following line is pseudo-code:
 viewLightDirection = (view * float4(lightDirection, 0.0)).xyz;

 // upload viewLightDirection to the GPU
 glUniform3fv(h_viewLightDirection, 1, viewLightDirection);

 // continue with model transformations
 openGLMatrix->Translate(x, y, z);
 ...

 renderBunny(); // render, via VAO
 glutSwapBuffers();
}

56

Upload the normal matrix to GPU
// in the display function:

// get a handle to the program
GLuint program = pipelineProgram->GetProgramHandle();

 // get a handle to the normalMatrix shader variable
 GLint h_normalMatrix =
 glGetUniformLocation(program, “normalMatrix”);

float n[16];
 matrix->SetMatrixMode(OpenGLMatrix::ModelView);
 matrix->GetNormalMatrix(n); // get normal matrix

// upload n to the GPU
GLboolean isRowMajor = GL_FALSE;
glUniformMatrix4fv(h_normalMatrix, 1, isRowMajor, n);

57

Summary

•  Global and Local Illumination
•  Normal Vectors
•  Light Sources
•  Phong Illumination Model
•  Polygonal Shading
•  Example

