
1

1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 13

Clipping

 Line Clipping
 Polygon Clipping
 Clipping in Three Dimensions
 [Angel Ch. 6]

2

The Graphics Pipeline, Revisited

•  Must eliminate objects that are outside
of viewing frustum

•  Clipping: object space (eye coordinates)
•  Scissoring: image space (pixels in frame buffer)

–  most often less efficient than clipping

•  We will first discuss 2D clipping (for simplicity)
–  OpenGL uses 3D clipping

3

Clipping Against a Frustum

•  General case of frustum (truncated pyramid)

•  Clipping is tricky because of frustum shape

x

y

z

image plane
near far

clipped line

4

Perspective Normalization

•  Solution:
–  Implement perspective projection by perspective

normalization and orthographic projection
–  Perspective normalization is a homogeneous transformation

x

y

z
near far

clipped line

1

1
1

0

x

y

z

image plane
near far

clipped line

See [Angel Ch. 5.9]

5

The Normalized Frustum

•  OpenGL uses -1 ≤ x,y,z ≤ 1 (others possible)

•  Clip against resulting cube

•  Clipping against arbitrary (programmer-
specified) planes requires more general
algorithms and is more expensive

6

The Viewport Transformation

•  Transformation sequence again:
1.  Camera: From object coordinates to eye coords
2.  Perspective normalization: to clip coordinates
3.  Clipping
4.  Perspective division: to normalized device coords.
5.  Orthographic projection (setting zp = 0)
6.  Viewport transformation: to screen coordinates

•  Viewport transformation can distort
–  Solution: pass the correct window aspect ratio

to gluPerspective

2

7

Clipping

•  General: 3D object
against cube

•  Simpler case:
–  In 2D: line against

square or rectangle
–  Later: polygon clipping

x

y

z

clipped line

1

0 1

1

8

Clipping Against Rectangle in 2D

•  Line-segment clipping: modify endpoints of
lines to lie within clipping rectangle

9

Clipping Against Rectangle in 2D

•  The result (in red)

10

Clipping Against Rectangle in 2D

•  Could calculate intersections of line segments with
clipping rectangle
–  expensive, due to floating point multiplications

and divisions
•  Want to minimize the number of multiplications

and divisions

y = k x + n

x = x0 x = x1

y = y1

y = y0

11

Several practical algorithms for clipping

•  Cohen-Sutherland Clipping
•  Liang-Barsky Clipping
•  There are many more

(but many only work in 2D)

•  Main motivation:

Avoid expensive line-rectangle intersections
(which require floating point divisions)

12

Cohen-Sutherland Clipping

•  Clipping rectangle is an intersection of 4 half-
planes

•  Encode results of four half-plane tests
•  Generalizes to 3 dimensions (6 half-planes)

y < ymax y > ymin

x > xmin x < xmax

= ∩
interior

xmin xmax
ymin

ymax

3

13

Outcodes (Cohen-Sutherland)

•  Divide space into 9 regions
•  4-bit outcode determined by comparisons

1000

0000

0100

1001

0001

0101 0110

0010

1010

ymax

ymin

xmax xmin

bo: y > ymax
b1: y < ymin
b2: x > xmax
b3: x < xmin

o1 = outcode(x1,y1)
o2 = outcode(x2,y2)

(x1,y1)
(x2,y2)

14

Cases for Outcodes

•  Outcomes: accept, reject, subdivide

1000

0000

0100

1001

0001

0101 0110

0010

1010

ymax

ymin

xmax xmin

o1 = o2 = 0000: accept entire
 segment

o1 & o2 ≠ 0000: reject entire
 segment

o1 = 0000, o2 ≠ 0000: subdivide

o1 ≠ 0000, o2 = 0000: subdivide

o1 & o2 = 0000: subdivide bitwise AND

15

Cohen-Sutherland Subdivision

•  Pick outside endpoint (o ≠ 0000)
•  Pick a crossed edge (o = b0b1b2b3 and bk ≠ 0)
•  Compute intersection of this line and this edge
•  Replace endpoint with intersection point
•  Restart with new line segment

–  Outcodes of second point are unchanged
•  This algorithms converges

16

Liang-Barsky Clipping

•  Start with parametric form for a line

p1

p2

17

Liang-Barsky Clipping

•  Compute all four intersections 1,2,3,4 with
extended clipping rectangle

•  Often, no need to compute all four intersections

p1
p2

1

4 3

2

extended clipping rectangle

18

Ordering of intersection points

•  Order the intersection points
•  Figure (a): 1 > α4 > α3 > α2 > α1 > 0
•  Figure (b): 1 > α4 > α2 > α3 > α1 > 0

4

19

Liang-Barsky Idea

•  It is possible to clip already if one knows
the order of the four intersection points !

•  Even if the actual intersections were not computed !
•  Can enumerate all ordering cases

20

Liang-Barsky efficiency improvements

•  Efficiency improvement 1:
–  Compute intersections one by one
–  Often can reject before all four are computed

•  Efficiency improvement 2:
–  Equations for α3, α2

–  Compare α3, α2 without floating-point division

21

Line-Segment Clipping Assessment

•  Cohen-Sutherland
–  Works well if many lines can be rejected early
–  Recursive structure (multiple subdivisions) is

a drawback
•  Liang-Barsky

–  Avoids recursive calls
–  Many cases to consider (tedious, but not expensive)

22

Outline

•  Line-Segment Clipping
–  Cohen-Sutherland
–  Liang-Barsky

•  Polygon Clipping
–  Sutherland-Hodgeman

•  Clipping in Three Dimensions

23

Polygon Clipping

•  Polygon is clipped into one or more polygons
•  Their union is intersection with clip window
•  Alternatively, we can first tesselate concave

polygons (OpenGL supported)

24

Concave Polygons
•  Approach 1: clip, and then join pieces to a

single polygon
–  often difficult to manage

•  Approach 2: tesselate and clip triangles
–  this is the common solution

tesselation

5

25

Sutherland-Hodgeman (part 1)

•  Subproblem:
–  Input: polygon (vertex list) and single clip plane
–  Output: new (clipped) polygon (vertex list)

•  Apply once for each clip plane
–  4 in two dimensions
–  6 in three dimensions
–  Can arrange in pipeline

26

Sutherland-Hodgeman (part 2)

•  To clip vertex list (polygon) against a half-plane:
–  Test first vertex. Output if inside, otherwise skip.
–  Then loop through list, testing transitions

•  In-to-in: output vertex
•  In-to-out: output intersection
•  out-to-in: output intersection and vertex
•  out-to-out: no output

–  Will output clipped polygon as vertex list
•  May need some cleanup in concave case
•  Can combine with Liang-Barsky idea

27

Other Cases and Optimizations

•  Curves and surfaces
–  Do it analytically if possible
–  Otherwise, approximate curves / surfaces by

lines and polygons
•  Bounding boxes

–  Easy to calculate and maintain
–  Sometimes big savings

28

Outline

•  Line-Segment Clipping
–  Cohen-Sutherland
–  Liang-Barsky

•  Polygon Clipping
–  Sutherland-Hodgeman

•  Clipping in Three Dimensions

29

Clipping Against Cube

•  Derived from earlier algorithms
•  Can allow right parallelepiped

30

Cohen-Sutherland in 3D

•  Use 6 bits in outcode
–  b4: z > zmax
–  b5: z < zmin

•  Other calculations
 as before

6

31

Liang-Barsky in 3D

•  Add equation z(α) = (1- α) z1 + α z2
•  Solve, for p0 in plane and normal n:

•  Yields

•  Optimizations as for Liang-Barsky in 2D

32

Summary: Clipping

•  Clipping line segments to rectangle or cube
–  Avoid expensive multiplications and divisions
–  Cohen-Sutherland or Liang-Barsky

•  Polygon clipping
–  Sutherland-Hodgeman pipeline

•  Clipping in 3D
–  essentially extensions of 2D algorithms

33

Preview and Announcements

•  Scan conversion
•  Anti-aliasing
•  Other pixel-level operations
•  Assignment 2 due a week from today!

