
	

1	

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 3

Graphics Pipeline

	Graphics Pipeline
	Primitives: Points, Lines, Triangles
 [Angel Ch. 2]

1

Graphics Pipeline

2

Primitives+
material

properties

Translate
Rotate
Scale

Is it visible
on screen?

3D to 2D Convert to
pixels

Shown
on the screen
(framebuffer)

The Framebuffer

3

•  Special memory on the graphics card

•  Stores the current pixels to be displayed on the
monitor

•  Monitor has no storage capabilities

•  The framebuffer is copied to the monitor at each
refresh cycle

Rendering with OpenGL

4

•  Application generates the
geometric primitives (polygons, lines)

•  System draws each one into the framebuffer

•  Entire scene redrawn anew every frame

•  Compare to: off-line rendering
(e.g., Pixar Renderman, ray tracers)

The pipeline is implemented by
OpenGL, graphics driver and
the graphics hardware

5

OpenGL programmer does not need to implement
the pipeline.

However, pipeline is reconfigurable
! “shaders”

Graphics Pipeline

6

•  Efficiently implementable in hardware
(but not in software)

•  Each stage can employ multiple specialized processors,
working in parallel, buses between stages

•  #processors per stage, bus bandwidths are fully
tuned for typical graphics use

•  Latency vs throughput

2	

Vertices (compatibility profile)

• Vertices in world coordinates
 void glVertex3f(GLfloat x, GLfloat y, GLfloat z)

	– Vertex (x, y, z) is sent down the pipeline.
	– Function call then returns.

• Use GLtype for portability and consistency
• glVertex{234}{sfid}[v](TYPE coords)

7

Vertices (core profile)

• Vertices in world coordinates
• Store vertices into a Vertex Buffer Object (VBO)
•  Upload the VBO to the GPU during program during

program initialization (before rendering)
•  OpenGL renders directly from the VBO

8

Transformer (compatibility profile)

• Transformer in world coordinates
• Must be set before object is drawn!

	glRotatef(45.0, 0.0, 0.0, -1.0);
	glVertex2f(1.0, 0.0);

• Complex [Angel Ch. 3]

9

Transformer (core profile)

• Transformer in world coordinates
• 4x4 matrix
•  Created manually by the user
•  Transmitted to the shader program before rendering

10

Clipper

• Mostly automatic (must set viewing volume)

11

Projector

• Complex transformation [Angel Ch. 4]

Orthographic Perspective

12

3	

Rasterizer

• Interesting algorithms [Angel Ch. 6]
• To window coordinates
•  Antialiasing

13

Geometric Primitives

14

•  Suppose we have 8 vertices:
p0, p1, p2, p3, p4, p5, p6, p7

•  Then, one can interpret them as:

•  GL_POINTS, GL_LINES, GL_TRIANGLES
are examples of primitive type

Triangles

15

•  Can be any shape or size

•  Well-shaped triangles
have advantages
for numerical simulation

•  Shape quality makes
little difference for
basic OpenGL rendering

Geometric Primitives
(compatibility profile)	
• Specified via vertices
• General schema

	glBegin(type);
	 	glVertex3f(x1, y1, z1);
	 	...
	 	glVertex3f(xN, yN, zN);
	glEnd();

• type determines interpretation of vertices
•  Can use glVertex2f(x,y) in 2D

16

Example: Draw Two Square Edges
(compatibility profile)

• Type = GL_LINES

	 	glBegin(GL_LINES);
	 	 	glVertex3f(0.0, 0.0, -1.0);
	 	 	glVertex3f(1.0, 0.0, -1.0);
	 	 	glVertex3f(1.0, 1.0, -1.0);
	 	 	glVertex3f(0.0, 1.0, -1.0);
	 	glEnd();

• Calls to other functions are allowed between
	glBegin(type) and glEnd();

17

(0,0)	 (1,0)	

(1,1)	(0,1)	

Geometric Primitives
(core profile)

• Specified via vertices
• Stored in a Vertex Buffer Object

(VBO)												
 int numVertices = 300;
 float vertices[3 * numVertices];
 // (… fill the “vertices” array …)
 // create the VBO:
 GLuint buffer;
 glGenBuffers(1, &buffer);
 glBindBuffer(GL_ARRAY_BUFFER, buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices),
 vertices, GL_STATIC_DRAW); 18

4	

Render Points and Line Segments
(compatibility profile)

19

glBegin (GL_POINTS); // or GL_LINES to render lines
 glVertex3f(…);
 …
 glVertex3f(…);
glEnd();

Render Points and Line Segments
(core profile)

20

glDrawArrays(GL_POINTS, 0, numVertices); // render points
glDrawArrays(GL_LINES, 0, numVertices); // render lines

Main difference between the two profiles	

21

Rendering:

glBegin(type);
 glVertex3f(x1, y1, z1);
 ...
 glVertex3f(xN, yN, zN);
glEnd();

Initialization:

int numVertices = 300;

float vertices[3 * numVertices];

// (… fill the “vertices” array …)

// create the VBO:

GLuint buffer;

glGenBuffers(1, &buffer);

glBindBuffer(GL_ARRAY_BUFFER, buffer);

glBufferData(GL_ARRAY_BUFFER,

 sizeof(vertices), vertices, GL_STATIC_DRAW);

Rendering:

glDrawArrays(type, 0, numVertices);

Compatibility:	 Core:	

Common Bug	

22

Int numVertices = 50000;

float * vertices = (float*) malloc (sizeof(float) * 3 * numVertices);

…

glBufferData(GL_ARRAY_BUFFER,

 sizeof(vertices), vertices, GL_STATIC_DRAW);

What is wrong?

Common Bug	

23

Int numVertices = 50000;

float * vertices = (float*) malloc (sizeof(float) * 3 * numVertices);

…

glBufferData(GL_ARRAY_BUFFER,

 sizeof(vertices), vertices, GL_STATIC_DRAW);

glBufferData(GL_ARRAY_BUFFER,

 sizeof(float) * 3 * numVertices, vertices, GL_STATIC_DRAW);

Polygons

• Polygons enclose an area

• Rendering of area (fill) depends on attributes
•  All vertices must be in one plane in 3D
•  GL_POLYGON and GL_QUADS are only

available in the compatibility profile
(removed in core profile since OpenGL 3.1)

24

5	

Polygon Restrictions
(relevant for compatibility profile only)

• OpenGL Polygons must be simple
• OpenGL Polygons must be convex

	(a) simple, but not convex

																																				(c) convex

		(b) non-simple
25

Why Polygon Restrictions?

• Non-convex and non-simple polygons are
	expensive to process and render

• Convexity and simplicity is expensive to test
• Behavior of OpenGL implementation on

	disallowed polygons is “undefined”
• Some tools in GLU for decomposing complex

	polygons (tessellation)
• Triangles are most efficient
•  Polygons removed since OpenGL 3.1

26

Triangle Strips

• Efficiency in space and time
• Reduces visual artefacts

27

Summary

1.  Graphics pipeline
2.  Primitives: vertices, lines, triangles

28

