CSCI 420 Computer Graphics Lecture 24

Non-Photorealistic Rendering

Pen-and-ink Illustrations Painterly Rendering Cartoon Shading Technical Illustrations

Jernej Barbic University of Southern California

1

Goals of Computer Graphics

- · Traditional: Photorealism
- · Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization [Lecture next week]

cartoon shading

Non-Photorealistic Rendering

"A means of creating imagery that does not aspire to realism" - Stuart Green

Cassidy Curtis 1998

David Gainey

Expressive graphics

Non-photorealistic Rendering

Also called:

· Psychographics

Source: ATI

Some NPR Categories

- · Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art, etc.
- · Painterly rendering
 - Styles: impressionist, expressionist, pointilist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - ${\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}$ Characteristics: Matte shading, edge lines, etc.
- · Scientific visualization
 - Methods: splatting, hedgehogs, etc.

5

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

Strokes and Stroke Textures

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- · Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- · How automatic are stroke textures?

Indication

- · Selective addition of detail
- · Difficult to automate
- · User places detail segments interactively

15

Outlines

- · Boundary or interior outlines
- · Accented outlines for shadowing and relief
- · Dependence on viewing direction
- · Suggest shadow direction

Place strokes along isoparametric lines
Choose density for desired tone
tone = spacing / width

Rendering Parametric Surfaces

Stroke orientation and density

,

Orientable Textures

- · Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

23

Orientable Stroke Texture Example

22

Outline

- Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

Painterly Rendering

- · Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes

Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

25

Computer-Generated Watercolor

- · Complex physical phenomena for artistic effect
- · Build simple approximations
- · Paper generation as random height field

· Simulated effects

26

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- · Paper saturation and capacity

· Discretize and use cellular automata

27

Interactive Painting

28

Automatic Painting Example

Hertzmann 1997

29

Automatic Painting from Images

- Start from color image: no 3D information
- · Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- · Layers are painted coarse-to-fine
- Styles controlled by parameters

Painting Styles

- · Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- · Encapsulate parameter settings as style

32

Some Styles

- · "Impressionist"
 - No random color, 4 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, 10 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor ~0.75, 0 ≤ stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100
- Not completely convincing to artists (yet?)

34

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

Cartoon Shading

- · Shading model in 2D cartoons
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic

35

- Used in many animated movies
- Real-time techniques for games

Source: Alec Rivers

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

39

Technical Illustrations

- · Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details Ruppel 1995
- · Do not represent reality

__

Conventions in Technical Illustrations

- · Black edge lines
- · Cool to warm shading colors
- · Single light source; shadows rarely used

Technical Illustration Example

Phong shading Metal shading (anisotropic) Edge lines Gooch shading gives better depth perception)

Source: Bruce Gooch

The Future

- · Smart graphics
 - Design from the user's perspective
 - HCI, AI, Perception
- · Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

43

Summary

- · Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- · Employ them in novel ways
- · Have fun!