CSCI 480 Compute Graphics Programming Assignment 2 Simulating a Roller Coaster

For every time step of your simulation, the curve parameter u can be updated using the following equation:

$$u_{new} = u_{current} + (\Delta t) \frac{\sqrt{2g(h_{max} - h)}}{\left\|\frac{dp}{du}\right\|}$$

where Δt is the time step,

g is the gravity constant,

 h_{max} is the maximum height of the track,

h is the current height of the roller coaster,

p is a function of *u* (i.e. p(u)) that computes the position (in 3D) of the roller coaster at $u=u_{current}$ (see p.628 of the textbook "Interactive Computer Graphics: A Top-Down Approach Using OpenGL" for the exact equation of p(u)).

Note that $\frac{dp}{du}$ is the derivative of p(u) with respect to u, and the derivative is evaluated at $u=u_{current}$. Also, $\left\|\frac{dp}{du}\right\|$ is the magitude (i.e. $mag=\sqrt{x^2+y^2+z^2}$) of the vector $\frac{dp}{du}$.