CSCI 480 Compute Graphics
 Programming Assignment 2 Simulating a Roller Coaster

For every time step of your simulation, the curve parameter u can be updated using the following equation:

$$
u_{\text {new }}=u_{\text {current }}+(\Delta t) \frac{\sqrt{2 \mathrm{~g}\left(h_{\text {max }}-h\right)}}{\left\|\frac{d p}{d u}\right\|}
$$

where Δt is the time step, g is the gravity constant, $h_{\text {max }}$ is the maximum height of the track,
h is the current height of the roller coaster,
p is a function of u (i.e. $p(u)$) that computes the position (in 3D) of the roller coaster at $u=u_{\text {current }}$ (see p. 628 of the textbook "Interactive Computer Graphics: A TopDown Approach Using OpenGL" for the exact equation of $p(u)$).

Note that $\frac{d p}{d u}$ is the derivative of $p(u)$ with respect to u, and the derivative is evaulated at $u=u_{\text {current }}$. Also, $\left\|\frac{d p}{d u}\right\|$ is the magitude (i.e. $\operatorname{mag}=\sqrt{x^{2}+y^{2}+z^{2}}$) of the vector $\frac{d p}{d u}$.

