CSCIl 420 Computer Graphics
Lecture 4

Interaction

Client/Server Model
Callbacks
Double Buffering

Hidden Surface Removal
[Angel Ch. 2]

Jernej Barbic
University of Southern California

Client/Server Model

* Graphics hardware and caching

“Client” “Server”

CPU GPU

Important for efficiency
Need to be aware where data are stored

Graphics driver code is on the CPU
Rendering resources (buffers, shaders,
textures, etc.) are on the GPU

The CPU-GPU bus

PCI, PCI Express
Fast, but limited bandwidth

can also read back

Buffer Objects

« Store rendering data: vertex positions, normals,
texture coordinates, colors,
vertex indices, etc.
Optimize and store on server (GPU)

“Client” “Server”
bus
CPU

Store here

Vertex Buffer Objects

« Caches vertex geometric data:
positions, normals, texture coordinates, colors

* Optimize and store on server (GPU)
* Required for core OpenGL profile

[* vertices of the quad (will form two triangles;
rendered via GL_TRIANGLES) */
float positions[6][3] =
{{-1.0, -1.0, -1.0}, {1.0, -1.0, 10}{
{-1.0, -1.0, -1.0}, {1.0, 1.0, -1.0}, {-

/* colors to be assigned to vertices (4th value is the alpha channel)
*/
float colors[6][4] =
{{0.0, 0.0, 0.0, 1.0
{0.0,0.0,1.0,1.0

Vertex Buffer Object: Initialization

GLuint vbo;

void initVBO()
{
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(positions) + sizeof(colors),
nullptr, GL_STATIC_DRAW); //init VBO's size, but don’t assign any data to it

/[upload position data
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(positions), positions);

/[upload color data
glBufferSubData(GL_ARRAY_ BUFFER, sizeof(positions), sizeof(colors), colors);

}

Old technology: Display Lists
(compatibility profile only)

Cache a sequence of drawing commands
Very useful with complex objects that are
redrawn often (e.g., with transformations)

Another example: fonts (2D or 3D)

Display lists can call other display lists
Display lists cannot be changed
Display lists can be erased / replaced

Replaced with VBOs

Display Lists

« Cache a sequence of drawing commands
* Optimize and store on server (GPU)

GLuint listName = glGenLists(1); /* new list name */
glNewList (listName, GL_COMPILE); /* new list */
glColor3f(1.0, 0.0, 1.0);
glBegin(GL_TRIANGLES);
glVertex3f(0.0, 0.0, 0.0);

glEnd();
glEndList(); /* at this point, OpenGL compiles the list */
glCallList(listName); /* draw the object */

Element Arrays

* Draw cube with 6*2*3=36 or with 8 vertices?
« Expense in drawing and transformation

* Triangle strips help to some extent
* Element arrays provide general solution

 Define (transmit) array of vertices, colors, normals
* Draw using index into array(s) :
/I (must first set up the GL_ELEMENT_ARRAY_BUFFER) ...
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED _INT, 0);
 Vertex sharing for efficient operations
 Extra credit for first assignment

Outline

 Client/Server Model
 Callbacks

* Double Buffering
 Hidden Surface Removal

GLUT Program with Callbacks

START

v

Initialization

Main event loop

v

Idle()

l

Display()

Reshape(..)

Motion(..) 1&—

Mouse(..)

Keyboard(..)

T

Menu(..)

Main Event Loop

« Standard technique for interaction
(GLUT, Qt, wxWidgets, ...)

* Main loop processes events
* Dispatch to functions specified by client
» Callbacks also common in operating systems

* “Poor man’s functional programming”

Types of Callbacks

Display () : when window must be drawn
dle () : when no other events to be handled

Keyboard (unsigned char key, int x, int y) : key pressed
* Menu (...) : after selection from menu

* Mouse (int button, int state, int x, int y) : mouse button
* Motion (...) : mouse movement

* Reshape (int w, int h) : window resize

* Any callback can be NULL

Outline

 Client/Server Model
 Callbacks

* Double Buffering
 Hidden Surface Removal

Screen Refresh

Common: 60-100 Hz

Flicker if drawing overlaps screen refresh
Problem during animation

Solution: use two separate frame buffers:

— Draw into one buffer

— Swap and display, while drawing into other buffer
Desirable frame rate >= 30 fps (frames/second)

Enabling Single/Double Buffering

glutinitDisplayMode(GLUT_SINGLE);
glutinitDisplayMode(GLUT _DOUBLE);

Single buffering:
Must call glFinish() at the end of Display()
Double buffering:

Must call glutSwapBuffers() at the end of Display()

Must call glutPostRedisplay() at the end of Idle()

If something in OpenGL has no effect or does
not work, check the modes in glutinitDisplayMode

Outline

 Client/Server Model
 Callbacks

* Double Buffering
 Hidden Surface Removal

Hidden Surface Removal

* Classic problem of computer graphics
* What is visible after clipping and projection?

* Object-space vs image-space approaches

* Object space: depth sort (Painter’s algorithm)
* Image space: z-buffer algorithm

 Related: back-face culling

Object-Space Approach

« Consider objects pairwise

LB B 1

(d)

Painter’s algorithm: render back-to-front
“Paint” over invisible polygons
How to sort and how to test overlap?

Depth Sorting

 First, sort by furthest distance z from viewer
* If minimum depth of A is greater than maximum
depth of B, A can be drawn before B

* If either x or y extents do not overlap, Aand B
can be drawn independently

Some Difficult Cases

« Sometimes cannot sort polygons!

Cyclic overlap Piercing Polygons

* One solution: compute intersections & subdivide
» Do while rasterizing (difficult in object space)

Painter’'s Algorithm Assessment

Strengths

— Simple (most of the time)
— Handles transparency well
— Sometimes, no need to sort (e.g., heightfield)
WEELQEREER
— Clumsy when geometry is complex
— Sorting can be expensive
Usage
— PostScript interpreters
— OpenGL: not supported
(must implement Painter’s Algorithm manually)

Image-space approach

3D geometry Depth image
darker color is closer

Source: Wikipedia 23

Depth sensor camera

KINECT

Image-Space Approach

« Raycasting: intersect ray with polygons

* O(Kk) worst case (often better)

* |Images can be more jagged (need anti-aliasing) e

The z-Buffer Algorithm

z-buffer stores depth values z for each pixel
Before writing a pixel into framebuffer:

— Compute distance z of pixel from viewer

— If closer, write and update z-buffer, otherwise discard

After rendering A:

The z-Buffer Algorithm

z-buffer stores depth values z for each pixel
Before writing a pixel into framebuffer:

— Compute distance z of pixel from viewer

— If closer, write and update z-buffer, otherwise discard

After rendering A and B:

z-Buffer Algorithm Assessment

Strengths

— Simple (no sorting or splitting)

— Independent of geometric primitives

WEELQEREER

— Memory intensive (but memory is cheap now)

— Tricky to handle transparency and blending

— Depth-ordering artifacts

Usage

— z-Buffering comes standard with OpenGL,;
disabled by default; must be enabled

Depth Buffer in OpenGL

* glutinitDisplayMode(GLUT DOUBLE |
GLUT _RGBA| GLUT DEPTH);

 glEnable (GL_DEPTH_TEST);

* Inside Display():
glClear (GL_DEPTH_BUFFER_BIT);

 Remember all of these!
« Some “tricks” use z-buffer in read-only mode

Note for Mac computers

Must use the GLUT_3 2 CORE_PROFILE flag

to use the core profile:

glutinitDisplayMode(GLUT 3 2 CORE_PROFILE |

GLUT_DOUBLE | GLUT_RGBA| GLUT_DEPTH);

Summary

 Client/Server Model
 Callbacks

* Double Buffering
 Hidden Surface Removal

