
1 

1 

Jernej Barbic 
University of Southern California 

CSCI 420 Computer Graphics 
Lecture 12 

Texture Mapping 

  Texture Mapping + Shading 
  Filtering and Mipmaps 
  Non-color Texture Maps     
  [Angel Ch. 7] 

2 

Texture Mapping 
•  A way of adding surface details  

•  Two ways can achieve the goal: 
– Model the surface with more polygons 

» Slows down rendering speed 
» Hard to model fine features 

– Map a texture to the surface 
» This lecture 
»  Image complexity does not affect  

complexity of processing 

•  Efficiently supported in hardware 

3 

Trompe L’Oeil (“Deceive the Eye”) 

Jesuit Church, Vienna, Austria 

• Windows and 
columns in the dome 
are painted,  
not a real 3D object 

• Similar idea with 
texture mapping: 

Rather than modeling 
the intricate 3D 
geometry, replace it 
with an image ! 

4 

Map textures to surfaces 

The polygon can have 
arbitrary size, shape and 
3D position 

an image 
image mapped 
to a 3D polygon 

texture map 

5 

The texture 
•  Texture is a bitmap image 

–  Can use an image library to load image into memory 
–  Or can create images yourself within the program 

•  2D array:  
unsigned char texture[height][width][4] 

•  Or unrolled into 1D array: 
unsigned char texture[4*height*width]  

•  Pixels of the texture are called texels 

•  Texel coordinates (s,t) scaled to [0,1] range 

6 

Texture map 

(0,0) 

(1,0) 

(0,1) 

(1,1) 

(0,1) 

(0,0) (1,0) 

(1,1) 

texture image 

3D polygon 



2 

7 

Texture map 

(0,0) 

(1,0) 

(0,1) 

(1,1) 

(0,1) 

(0,0) (1,0) 

(1,1) 

texture image 

3D polygon 

8 

Texture coordinates 

(s,t) 

(s,t) 

For each pixel,  
lookup into the  

texture image to 
obtain color. 

texture image 

screen image 

9 

The “st” coordinate system 

s 

t 

0 
1 

1 

0 

Note: also  
called “uv” 
space 

(s,t) 

10 

Texture mapping: key slide 

s 

t 

0 
1 

1 

0 

(0.7,0.55) 

(0.1,0.7) 

(0.35,0.05) 

s = 0.7 
t = 0.55 

s = 0.35 
t = 0.05 

s = 0.1 
t = 0.7 

(2,-1,0) 

(-2,1,0) 

(0,1,0) 

triangle  
in 3D 

11 

•  Use VBO 

•  Either create a separate VBO 
for texture coordinates, or 
put them with vertex  
positions into one VBO 

Specifying texture coordinates  
in OpenGL (core profile) 

s = 0.35 
t = 0.05 

s = 0.7 
t = 0.55 

s = 0.1 
t = 0.7 

12 

•  Use glTexCoord2f(s,t) 
•  State machine: Texture coordinates remain valid until 

you change them  
•  Example (from the previous slide) : 

Specifying texture coordinates  
in OpenGL (compatibility profile) 

 glEnable(GL_TEXTURE_2D); // turn texture mapping on  
 glBegin(GL_TRIANGLES); 
   glTexCoord2f(0.35,0.05); glVertex3f(2.0,-1.0,0.0); 
   glTexCoord2f(0.7,0.55); glVertex3f(-2.0,1.0,0.0); 
   glTexCoord2f(0.1,0.7); glVertex3f(0.0,1.0,0.0); 
 glEnd(); 
 glDisable(GL_TEXTURE_2D); // turn texture mapping off 

s = 0.35 
t = 0.05 

s = 0.7 
t = 0.55 

s = 0.1 
t = 0.7 



3 

13 

What if texture coordinates 
 are outside of [0,1] ? 

(s,t) 

s 0 1 

1 

0 

t 

14 

Solution 1: Repeat texture 

(s,t) 

s 0 1 

1 

0 

t 

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) 

15 

Solution 2: Clamp to [0,1] 

(s,t) 

s 0 1 

1 

0 

t 

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) 

use this color 

16 

Combining texture mapping and shading 

Source: Jeremy Birn 

17 

Outline 

•  Introduction 
•  Filtering and Mipmaps 
•  Non-color texture maps 
•  Texture mapping in OpenGL 

18 

Texture interpolation 

(s,t) coordinates 
typically not 
directly at pixel 
in the texture, 
but in between 

 (1,1) 

 (0.25,0)  (0.5,0)  (0.75,0)  (1,0)  (0,0) 

 5 x 5 texture T(s,t) 



4 

19 

Texture interpolation 
•  (s,t) coordinates typically not directly at pixel in the texture,  

but in between 
•  Solutions: 

– Use the nearest neighbor to determine color 
»  Faster, but worse quality 
»  glTexParameteri(GL_TEXTURE_2D,  

 GL_TEXTURE_MIN_FILTER, GL_NEAREST); 

–  Linear interpolation 
»  Incorporate colors of several neighbors to determine color 
»  Slower, better quality 
»  glTexParameteri(GL_TEXTURE_2D, 

    GL_TEXTURE_MIN_FILTER, GL_LINEAR) 

20 

Filtering 
•  Texture image is 

shrunk in distant parts 
of the image 

•  This leads to aliasing 

•  Can be fixed with 
filtering 
–  bilinear in space 
–  trilinear in space and  

level of detail (mipmapping) 

aliasing 

21 

•  Pre-calculate how the texture should look at various  
  distances, then use the appropriate texture at each distance 
•  Reduces / fixes the aliasing problem  

Mipmapping 

22 

•  Each mipmap (each image below) represents  
a level of depth (LOD). 

•  Decrease image 2x at each level 

Mipmapping 

23 

•  Generate mipmaps automatically  
(for the currently bound texture): 

Core profile: 
glGenerateMipmap(GL_TEXTURE_2D); 

Compatibility profile: 
gluBuild2DMipmaps(GL_TEXTURE_2D, 
  components, width, height, format, type, data) 

•  Must also instruct OpenGL to use mipmaps: 

glTexParameteri(GL_TEXTURE_2D, 
 GL_TEXTURE_MIN_FILTER, 

  GL_LINEAR_MIPMAP_LINEAR) 

Mipmapping in OpenGL 

24 

Outline 

•  Introduction 
•  Filtering and Mipmaps 
•  Non-color texture maps 
•  Texture mapping in OpenGL 



5 

25 

•  Specularity (patches of shininess) 

•  Transparency (patches of clearness) 

•  Normal vector changes (bump maps) 

•  Reflected light (environment maps) 

•  Shadows 

•  Changes in surface height (displacement maps) 

Textures do not have  
to represent color 

26 

•  How do you make a surface look rough? 
–  Option 1: model the surface with many small polygons 
–  Option 2: perturb the normal vectors before the shading 

calculation 
»  Fakes small displacements above or below the true surface 
»  The surface doesn’t actually change,  

but shading makes it look like there are irregularities! 
»  A texture stores information about the “fake” height of the 

surface 

Bump mapping 

27 

•  We can perturb the normal vector without having to make any 
actual change to the shape. 

•  This illusion can be seen through—how? 

Bump mapping 

Original model 
(5M) 

Simplified 
(500) 

Simple model with 
bump map 

28 

•  Quake uses light maps in addition to texture maps. Texture maps 
are used to add detail to surfaces, and light maps are used to store 
pre-computed illumination. The two are multiplied together at run-
time, and cached for efficiency. 

Texture Map Only Texture + Light Map 

Light Map 

Light Mapping 

29 

Outline 

•  Introduction 
•  Filtering and Mipmaps 
•  Non-color texture maps 
•  Texture mapping in OpenGL 

30 

OpenGL Texture Mapping (Core Profile) 

•  During initialization: 
1. Read texture image from file into an array in memory,  

or generate the image using your program 
2.  Initialize the texture (glTexImage2D) 
3. Specify texture mapping parameters: 

»  Repeat/clamp, filtering, mipmapping, etc. 
4. Make VBO for the texture coordinates 
5. Create VAO 

•  In display(): 
1. Bind VAO 
2. Select the texture unit, and texture (using glBindTexture)  
3. Render (e.g., glDrawArrays) 



6 

31 

Read texture image from file  
into an array in memory 

•  Can use our ImageIO library 

•  ImageIO * imageIO = new ImageIO(); 
if (imageIO->loadJPEG(imageFilename) != ImageIO::OK) 
{ 
   cout << “Error reading image “ << imageFilename << “.” << endl; 
   exit(EXIT_FAILURE); 
} 

•  See starter code for hw2 

32 

Initializing the texture 

•  Do once during initialization, for each texture image in the 
scene, by calling glTexImage2D 

•  The dimensions of texture images must be a multiple of 4 
(Note: they do NOT have to be a power of 2) 

•  Can load textures dynamically if GPU memory is scarce: 

Delete a texture (if no longer needed) using 
glDeleteTextures 

33 

•  glTexImage2D(GL_TEXTURE_2D, level, internalFormat, width, height, 
   border, format, type, data) 

•  GL_TEXTURE_2D:  specifies that it is a 2D texture 
•  Level: used for specifying levels of detail for mipmapping (default: 0) 
•  InternalFormat 

–  Often: GL_RGB or GL_RGBA 
–  Determines how the texture is stored internally 

•  Width, Height 
–  The size of the texture must be a multiple of 4  

•  Border (often set to 0) 
•  Format, Type 

–  Specifies what the input data is (GL_RGB, GL_RGBA, …)  
–  Specifies the input data type (GL_UNSIGNED_BYTE, GL_BYTE, …) 
–  Regardless of Format and Type, OpenGL converts the data 

to internalFormat 
•  Data: pointer to the image buffer 

glTexImage2D 

34 

Texture Initialization 

  // create an integer handle for the texture 
  glGenTextures(1, &texHandle);  

  int code = initTexture(“sky.jpg”, texHandle); 
  if (code != 0) 
  { 
    printf(“Error loading the texture image.\n”); 
    exit(EXIT_FAILURE); 
  } 

  During initialization: 

  Function initTexture() is given in the starter code for hw2. 

Global variable: 
GLUint texHandle; 

35 

VBO Layout: positions, texture coordinates 
(for 2 vertices) 

in vec3 
position 

gg5’|53vs|ff&$|#422|424d|^^3d|aa7y|oarT|J^23|Gr/% 

pos1 
x 

pos1 
y 

pos1 
z 

pos2 
x 

pos2 
y 

pos2 
z 

VBO 

tc1 
u 

tc1 
v 

tc2 
u 

tc2 
v 

in vec2 
texCoord 

4 bytes per  
floating-point value 

36 

Texture Shader: Vertex Program 
#version 150 

in vec3 position; 
in vec2 texCoord; 

out vec2 tc; 

uniform mat4 modelViewMatrix; 
uniform mat4 projectionMatrix; 

void main() 
{ 
  // compute the transformed and projected vertex position (into gl_Position) 
  gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0f); 
  // pass-through the texture coordinate 
  tc = texCoord; 
} 

input vertex position  
and texture coordinates 

output texture coordinates; they will be passed to 
the fragment program (interpolated by hardware) 

transformation matrices 



7 

37 

Texture Shader: Fragment Program 
#version 150 

in vec2 tc; // input tex coordinates (computed by the interpolator) 
out vec4 c; // output color (the final fragment color) 
uniform sampler2D textureImage; // the texture image 

void main() 
{ 
  // compute the final fragment color,  
  // by looking up into the texture map 
  c = texture(textureImage, tc); 
} 

38 

VAO code (“texCoord” shader variable) 
During initialization: 

glBindVertexArray(vao); // bind the VAO 

// bind the VBO “buffer” (must be previously created) 
glBindBuffer(GL_ARRAY_BUFFER, buffer);  

// get location index of the “texCoord” shader variable 
GLuint loc = glGetAttribLocation(program, “texCoord”); 
glEnableVertexAttribArray(loc); // enable the “texCoord” attribute 

// set the layout of the “texCoord” attribute data 
const void * offset = (const void*) sizeof(positions);  GLsizei stride = 0; 
glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, stride, offset); 

39 

Multitexturing 

void setTextureUnit(GLint unit) 
{ 
  glActiveTexture(unit); // select the active texture unit 
  // get a handle to the “textureImage” shader variable 
  GLint h_textureImage = glGetUniformLocation(program, “textureImage”); 
  // deem the shader variable “textureImage” to read from texture unit “unit” 
  glUniform1i(h_textureImage, unit - GL_TEXTURE0); 
} 

•  The ability to use multiple textures  
simultaneously in a shader 

•  Useful for bump mapping, displacement mapping, etc. 
•  The different texture units are denoted by GL_TEXTURE0, 

GL_TEXTURE1, GL_TEXTURE2, etc. 
•  In simple applications (our homework), we only need one unit 

40 

The display function 
void display() 
{ 
   // put all the usual code here (clear screen, set up camera, upload  
   //   the modelview matrix and projection matrix to GPU, etc.) 
   // … 

  // select the active texture unit 
  setTextureUnit(GL_TEXTURE0); // it is safe to always use GL_TEXTURE0 
  // select the texture to use (“texHandle” was generated by glGenTextures) 
  glBindTexture(GL_TEXTURE_2D, texHandle);  

  // here, bind the VAO and render the object using the VAO (as usual) 
  // … 

  glutSwapBuffers(); 
} 

41 

Texture mapping in OpenGL 
(Compatibility Profile) 

•  During your initialization: 
1. Read texture image from file into an array in memory,  

or generate the image using your program 
2. Specify texture mapping parameters 

»  Wrapping, filtering, etc. 
3.  Initialize and activate the texture 

•  In display(): 
1. Enable OpenGL texture mapping 
2. Draw objects: Assign texture coordinates to vertices 
3. Disable OpenGL texture mapping 

42 

Enable/disable texture mode 
(Compatibility Profile) 

•  Must be done before rendering any primitives that 
are to be texture-mapped 

•  glEnable(GL_TEXTURE_2D) 
•  glDisable(GL_TEXTURE_2D) 

•  Successively enable/disable texture mode to switch 
between drawing textured/non-textured polygons 

•  Changing textures:  
–  Only one texture is active at any given time 

(with OpenGL extensions, more than one can be used 
simultaneously; this is called multitexturing) 

–  Use glBindTexture to select the active texture 



8 

43 

Rendering (compatibility profile) 

void display() 
{ 
  … 
  // no modulation of texture color with lighting; use texture color directly 
  glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, 

GL_REPLACE);  

  // turn on texture mapping (this disables standard OpenGL lighting, 
unless in GL_MODULATE mode) 

  glEnable(GL_TEXTURE_2D); 

  (continues on next page)  

44 

Rendering (compatibility profile) (part 2) 
  glBegin(GL_QUADS); // draw a textured quad 
    glTexCoord2f(0.0,0.0); glVertex3f(-2.0,-1.0,0.0); 
    glTexCoord2f(0.0,1.0); glVertex3f(-2.0,1.0,0.0); 
    glTexCoord2f(1.0,0.0); glVertex3f(0.0,1.0,0.0); 
    glTexCoord2f(1.0,1.0); glVertex3f(0.0,-1.0,0.0); 
  glEnd(); 

  // turn off texture mapping  
  glDisable(GL_TEXTURE_2D); 

  // draw some non-texture mapped objects  
(standard OpenGL lighting will be used if it is enabled) 

  … 
  // switch back to texture mode, etc. 
  … 
} // end display() 

45 

Summary 

•  Introduction 
•  Filtering and Mipmaps 
•  Non-color texture maps 
•  Texture mapping in OpenGL 


