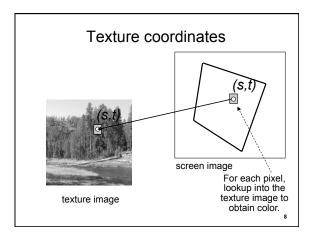
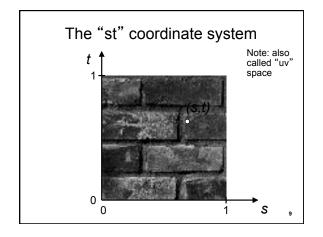
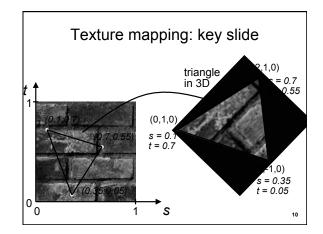
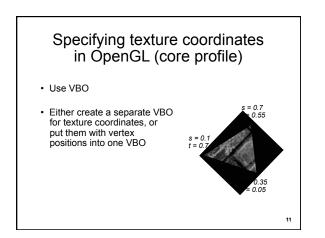
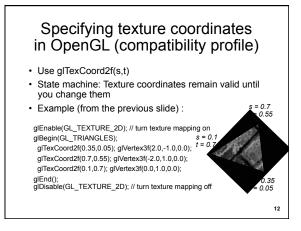

:

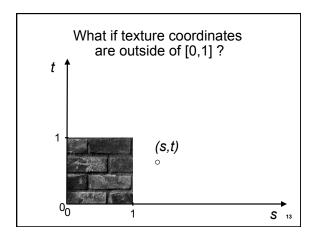


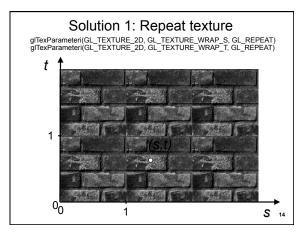



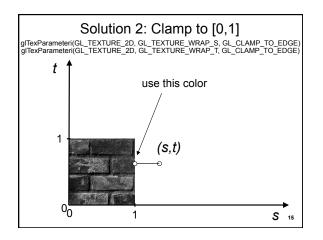



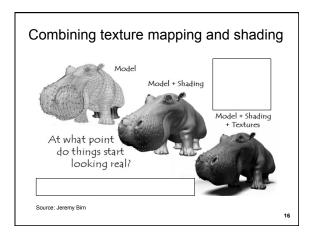



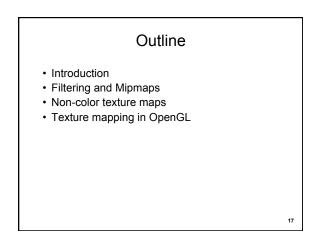



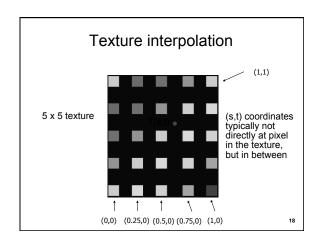



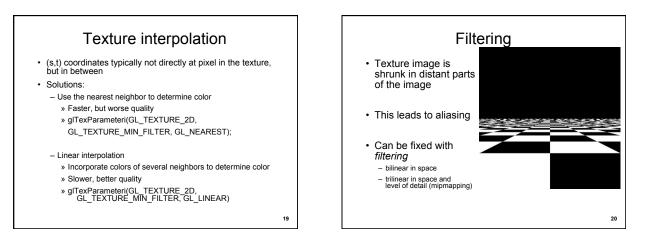



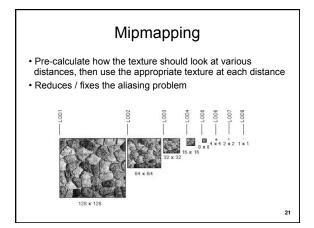



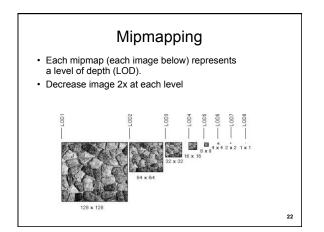



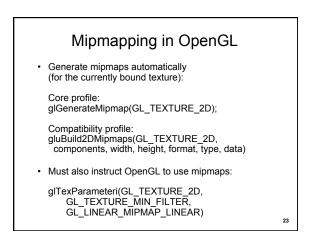





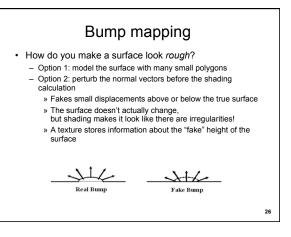


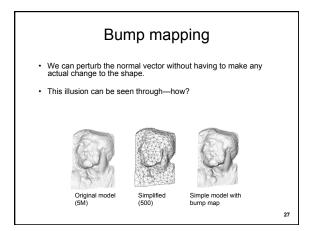


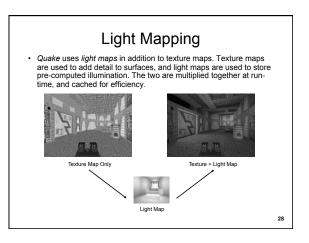


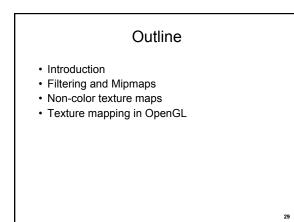



# Outline


24


- Introduction
- Filtering and Mipmaps
- Non-color texture maps
- Texture mapping in OpenGL


# Textures do not have to represent color


- · Specularity (patches of shininess)
- · Transparency (patches of clearness)
- Normal vector changes (bump maps)
- · Reflected light (environment maps)
- · Shadows
- · Changes in surface height (displacement maps)

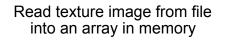

25












### 4. Make VBO for the texture coordinates

- 5. Create VAO
- In display():
  - 1. Bind VAO
  - 2. Select the texture unit, and texture (using glBindTexture)

30

3. Render (e.g., glDrawArrays)



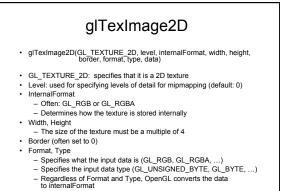
- · Can use our ImageIO library
- ImageIO \* imageIO = new ImageIO(); if (imageIO->loadJPEG(imageFilename) != ImageIO::OK)

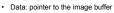
cout << "Error reading image " << imageFilename << "." << endl; exit(EXIT\_FAILURE);

31

33

· See starter code for hw2


### Initializing the texture


- Do once during initialization, for each texture image in the scene, by calling glTexImage2D
- The dimensions of texture images must be a multiple of 4 (Note: they do NOT have to be a power of 2)
- · Can load textures dynamically if GPU memory is scarce:

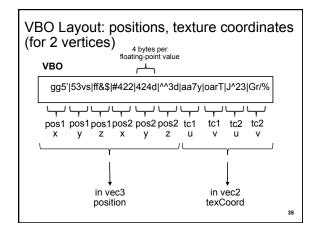
32

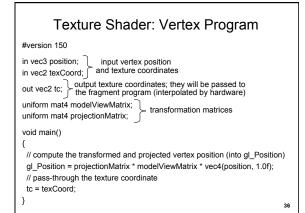
34

Delete a texture (if no longer needed) using glDeleteTextures









printf("Error loading the texture image.\n"); exit(EXIT\_FAILURE);

{

}

Function initTexture() is given in the starter code for hw2.





### Texture Shader: Fragment Program

#### #version 150

in vec2 tc; // input tex coordinates (computed by the interpolator) out vec4 c; // output color (the final fragment color) uniform sampler2D textureImage; // the texture image

#### void main()

// compute the final fragment color, // by looking up into the texture map

- c = texture(textureImage, tc);
- }

{

### VAO code ("texCoord" shader variable)

During initialization:

glBindVertexArray(vao); // bind the VAO

// bind the VBO "buffer" (must be previously created) glBindBuffer(GL\_ARRAY\_BUFFER, buffer);

// get location index of the "texCoord" shader variable GLuint loc = glGetAttribLocation(program, "texCoord"); glEnableVertexAttribArray(loc); // enable the "texCoord" attribute

// set the layout of the "texCoord" attribute data const void \* offset = (const void\*) sizeof(positions); GLsizei stride = 0; glVertexAttribPointer(loc, 2, GL\_FLOAT, GL\_FALSE, stride, offset);

38

40

### Multitexturing

- The ability to use *multiple* textures simultaneously in a shader
- Useful for bump mapping, displacement mapping, etc.
   The different texture write are depended by OL TEXTURE
- The different texture units are denoted by GL\_TEXTURE0, GL\_TEXTURE1, GL\_TEXTURE2, etc.
- In simple applications (our homework), we only need one unit

#### void setTextureUnit(GLint unit)

{

glActiveTexture(unit); // select the active texture unit

// get a handle to the "textureImage" shader variable

- GLint h\_textureImage = glGetUniformLocation(program, "textureImage"); // deem the shader variable "textureImage" to read from texture unit "unit"
- glUniform1i(h\_textureImage, unit GL\_TEXTURE0);

### The display function

#### void display() {

37

39

 $\ensuremath{\textit{//}}\xspace$  put all the usual code here (clear screen, set up camera, upload

- // the modelview matrix and projection matrix to GPU, etc.)
  // ...
- // ...

#### // select the active texture unit

setTextureUnit(GL\_TEXTURE0); // it is safe to always use GL\_TEXTURE0 // select the texture to use ("texHandle" was generated by glGenTextures) glBindTexture(GL\_TEXTURE\_2D, texHandle);

// here, bind the VAO and render the object using the VAO (as usual) //  $\ldots$ 

glutSwapBuffers();

## Texture mapping in OpenGL (Compatibility Profile)

- During your initialization:
  - 1. Read texture image from file into an array in memory, or generate the image using your program
  - 2. Specify texture mapping parameters
  - » Wrapping, filtering, etc.3. Initialize and activate the texture
- In display():
  - 1. Enable OpenGL texture mapping
  - 2. Draw objects: Assign texture coordinates to vertices
  - 3. Disable OpenGL texture mapping

## Enable/disable texture mode (Compatibility Profile)

- Must be done before rendering any primitives that are to be texture-mapped
- glEnable(GL\_TEXTURE\_2D)
- glDisable(GL\_TEXTURE\_2D)
- Successively enable/disable texture mode to switch between drawing textured/non-textured polygons
- Changing textures:
  - Only one texture is active at any given time (with OpenGL extensions, more than one can be used simultaneously; this is called *multitexturing*)
  - Use glBindTexture to select the active texture
- 42

41

# Rendering (compatibility profile)

void display() {

// no modulation of texture color with lighting; use texture color directly gTexEnvf(GL\_TEXTURE\_ENV, GL\_TEXTURE\_ENV\_MODE, GL\_REPLACE);

// turn on texture mapping (this disables standard OpenGL lighting, unless in GL\_MODULATE mode) glEnable(GL\_TEXTURE\_2D);

(continues on next page)

# Rendering (compatibility profile) (part 2) glBegin(GL\_QUADS); // draw a textured quad alterCoord/df(0.0.0.0); all/enter3f(-2.0.-1.0.0.0);

44

glBegin(GL\_QUADS); // draw a textured quad glTexCoord2f(0.0,0.0); glVertex3f(-2.0,-1.0,0.0); glTexCoord2f(0.0,1.0); glVertex3f(-2.0,1.0,0.0); glTexCoord2f(1.0,0.0); glVertex3f(0.0,-1.0,0.0); glTexCoord2f(1.0,1.0); glVertex3f(0.0,-1.0,0.0); glEnd(); // turn off texture mapping glDisable(GL\_TEXTURE\_2D);

// draw some non-texture mapped objects (standard OpenGL lighting will be used if it is enabled)

// switch back to texture mode, etc.

} // end display()

43

45

# Summary

- Introduction
- Filtering and Mipmaps
- Non-color texture maps
- Texture mapping in OpenGL