CSCI 420 Computer Graphics Lecture 13

# Clipping

Line Clipping Polygon Clipping Clipping in Three Dimensions [Angel Ch. 6]

Jernej Barbic University of Southern California

1

# The Graphics Pipeline, Revisited



- Must eliminate objects that are outside of viewing frustum
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer)
   most often less efficient than clipping
- We will first discuss 2D clipping (for simplicity)
  - OpenGL uses 3D clipping

2

# Clipping Against a Frustum

· General case of frustum (truncated pyramid)



· Clipping is tricky because of frustum shape

3

#### Perspective Normalization

- · Solution:
  - Implement perspective projection by perspective normalization and orthographic projection
  - Perspective normalization is a homogeneous transformation



4

#### The Normalized Frustum

- OpenGL uses  $-1 \le x, y, z \le 1$  (others possible)
- · Clip against resulting cube
- Clipping against arbitrary (programmerspecified) planes requires more general algorithms and is more expensive

5

#### The Viewport Transformation

- · Transformation sequence again:
  - 1. Camera: From object coordinates to eye coords
  - 2. Perspective normalization: to clip coordinates
  - 3. Clipping
  - 4. Perspective division: to normalized device coords.
  - 5. Orthographic projection (setting  $z_p = 0$ )
  - 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
  - Solution: pass the correct window aspect ratio to gluPerspective

#### Clipping

- General: 3D object against cube
- · Simpler case:
  - In 2D: line against square or rectangle
  - Later: polygon clipping



# Clipping Against Rectangle in 2D

• Line-segment clipping: modify endpoints of lines to lie within clipping rectangle



8

# Clipping Against Rectangle in 2D

• The result (in red)



# Clipping Against Rectangle in 2D

- Could calculate intersections of line segments with clipping rectangle
  - expensive, due to floating point multiplications and divisions
- Want to minimize the number of multiplications and divisions



#### Several practical algorithms for clipping

· Main motivation:

Avoid expensive line-rectangle intersections (which require floating point divisions)

- · Cohen-Sutherland Clipping
- · Liang-Barsky Clipping
- There are many more (but many only work in 2D)

Cohen-Sutherland Clipping

 Clipping rectangle is an intersection of 4 halfplanes



- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

12

# Outcodes (Cohen-Sutherland)

- · Divide space into 9 regions
- · 4-bit outcode determined by comparisons



# Cases for Outcodes • Outcomes: accept, reject, subdivide o<sub>1</sub> = o<sub>2</sub> = 0000: accept entire segment o<sub>1</sub> & o<sub>2</sub> = 0000: reject entire segment o<sub>1</sub> & o<sub>2</sub> = 0000: reject entire segment o<sub>1</sub> & o<sub>2</sub> = 0000: subdivide o<sub>1</sub> $\neq$ 0000, o<sub>2</sub> = 0000: subdivide bitwise AND o<sub>1</sub> & o<sub>2</sub> = 0000: subdivide

# Cohen-Sutherland Subdivision

- Pick outside endpoint (o ≠ 0000)
- Pick a crossed edge (o = b<sub>0</sub>b<sub>1</sub>b<sub>2</sub>b<sub>3</sub> and b<sub>k</sub> ≠ 0)
- · Compute intersection of this line and this edge
- · Replace endpoint with intersection point
- Restart with new line segment

   Outcodes of second point are unchanged
- · This algorithms converges

15

# Liang-Barsky Clipping

· Start with parametric form for a line

$$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \qquad 0 \le \alpha \le 1$$
  

$$x(\alpha) = (1 - \alpha)x_1 + \alpha x_2$$
  

$$y(\alpha) = (1 - \alpha)y_1 + \alpha y_2$$



#### Liang-Barsky Clipping

- Compute all four intersections 1,2,3,4 with extended clipping rectangle
- · Often, no need to compute all four intersections



#### Ordering of intersection points



- · Order the intersection points
- Figure (a):  $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b):  $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$

# Liang-Barsky Idea



- It is possible to clip already if one knows the order of the four intersection points!
- Even if the actual intersections were not computed!
- · Can enumerate all ordering cases

19

# Liang-Barsky efficiency improvements

- Efficiency improvement 1:
  - Compute intersections one by one
  - Often can reject before all four are computed
- Efficiency improvement 2:
  - Equations for  $\alpha_3$ ,  $\alpha_2$

$$y_{\text{max}} = (1 - \alpha_3)y_1 + \alpha_3 y_2$$

$$x_{\min} = (1 - \alpha_2)x_1 + \alpha_2 x_2$$

$$\alpha_3 = \frac{y_{\text{max}} - y_1}{y_2 - y_1}$$
  $\alpha_2 = \frac{x_{\text{min}} - x_1}{x_2 - x_1}$ 

– Compare  $\alpha_3$ ,  $\alpha_2$  without floating-point division

20

# **Line-Segment Clipping Assessment**

- · Cohen-Sutherland
  - Works well if many lines can be rejected early
  - Recursive structure (multiple subdivisions) is a drawback
- Liang-Barsky
  - Avoids recursive calls
  - Many cases to consider (tedious, but not expensive)

21

# Outline

- · Line-Segment Clipping
  - Cohen-Sutherland
  - Liang-Barsky
- · Polygon Clipping
  - Sutherland-Hodgeman
- · Clipping in Three Dimensions

22

#### Polygon Clipping

- Polygon is clipped into one or more polygons
- · Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)



23

#### Concave Polygons

- Approach 1: clip, and then join pieces to a single polygon
  - often difficult to manage







- · Approach 2: tesselate and clip triangles
  - this is the common solution



# Sutherland-Hodgeman (part 1)

- · Subproblem:
  - Input: polygon (vertex list) and single clip plane
  - Output: new (clipped) polygon (vertex list)
- · Apply once for each clip plane
  - 4 in two dimensions
  - 6 in three dimensions
  - Can arrange in pipeline



25

# Sutherland-Hodgeman (part 2)

- To clip vertex list (polygon) against a half-plane:
  - Test first vertex. Output if inside, otherwise skip.
  - Then loop through list, testing transitions
    - · In-to-in: output vertex
    - · In-to-out: output intersection
    - · out-to-in: output intersection and vertex
    - · out-to-out: no output
  - Will output clipped polygon as vertex list
- · May need some cleanup in concave case
- · Can combine with Liang-Barsky idea

26

# Other Cases and Optimizations

- · Curves and surfaces
  - Do it analytically if possible
  - Otherwise, approximate curves / surfaces by lines and polygons
- · Bounding boxes
  - Easy to calculate and maintain
  - Sometimes big savings



# Outline

- · Line-Segment Clipping
  - Cohen-Sutherland
  - Liang-Barsky
- Polygon Clipping
  - Sutherland-Hodgeman
- · Clipping in Three Dimensions

28

#### Clipping Against Cube

- · Derived from earlier algorithms
- · Can allow right parallelepiped



#### Cohen-Sutherland in 3D

- · Use 6 bits in outcode
  - $b_4: z > z_{max}$
- $b_5: z < z_{min}$
- · Other calculations as before



# Liang-Barsky in 3D

- Add equation  $z(\alpha) = (1 \alpha) z_1 + \alpha z_2$
- Solve, for  $\mathbf{p}_0$  in plane and normal  $\mathbf{n}$ :

$$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$$
$$n \cdot (p(\alpha) - p_0) = 0$$

Yields

$$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$

• Optimizations as for Liang-Barsky in 2D

31

# Summary: Clipping

- Clipping line segments to rectangle or cube
  - Avoid expensive multiplications and divisions
  - Cohen-Sutherland or Liang-Barsky
- · Polygon clipping
  - Sutherland-Hodgeman pipeline
- · Clipping in 3D
  - essentially extensions of 2D algorithms

32

# **Preview and Announcements**

- · Scan conversion
- Anti-aliasing
- · Other pixel-level operations
- · Assignment 2 due a week from today!