CSCI 420 Computer Graphics
Lecture 17

Spatial Data Structures

Hierarchical Bounding Volumes
Regular Grids

Octrees

BSP Trees

[Angel Ch. 8]

Jernej Barbic
University of Southern California

Ray Tracing Acceleration

 Faster intersections

— Faster ray-object intersections
* Object bounding volume
« Efficient intersectors

— Fewer ray-object intersections
 Hierarchical bounding volumes (boxes, spheres)
« Spatial data structures
 Directional techniques

* Fewer rays
— Adaptive tree-depth control
— Stochastic sampling

* Generalized rays (beams, cones)

Spatial Data Structures

« Data structures to store geometric information

« Sample applications
— Collision detection
— Location queries
— Chemical simulations
— Rendering

« Spatial data structures for ray tracing
— Object-centric data structures (bounding volumes)
— Space subdivision (grids, octrees, BSP trees)
— Speed-up of 10x, 100x, or more

Bounding Volumes

* Wrap complex objects in simple ones

* Does ray intersect bounding box?
— No: does not intersect enclosed objects
— Yes: calculate intersection with enclosed objects

 Common types:

Sphere Axis-aligned Oriented
Bounding Bounding
Box (AABB) Box (OBB)

Selection of Bounding Volumes

» Effectiveness depends on:

— Probability that ray hits bounding volume, but not
enclosed objects (tight fit is better)

— Expense to calculate intersections with bounding
volume and enclosed objects

* Amortize calculation of bounding volumes
* Use heuristics

good

Hierarchical Bounding Volumes

* With simple bounding volumes, ray casting still
requires O(n) intersection tests

 |dea: use tree data structure
— Larger bounding volumes contain smaller ones etc.
— Sometimes naturally available (e.g. human figure)
— Sometimes difficult to compute

» Often reduces complexity to O(log(n

@@@@%

Ray Intersection Algorithm

Recursively descend tree
f ray misses bounding volume, no intersection

f ray intersects bounding volume, recurse with
enclosed volumes and objects

Maintain near and far bounds to prune further

Overall effectiveness depends on model and
constructed hierarchy

Spatial Subdivision

Bounding volumes enclose objects, recursively
Alternatively, divide space (as opposed to objects)

For each segment of space, keep a list of
iIntersecting surfaces or objects

Basic techniques:

Uniform Quadtree/Octree kd-tree BSP-tree
Spatial Sub

8

Grids

« 3D array of cells (voxels) that tile space
« Each cell points to all intersecting surfaces

* Intersection
algorithm
steps from cell
to cell

Caching Intersection points

Objects can span multiple cells
For A need to test intersection only once

For B need to cache intersection and check
next cell for any closer intersection with
other objects

If not, C could be
missed (yellow ray)

/
—

Assessment of Grids

* Poor choice when world is non-homogeneous
 Grid resolution:

— Too small: too many surfaces per cell
— Too large: too many empty cells to traverse

— Can use algorithms like Bresenham’ s
for efficient traversal

* Non-uniform spatial subdivision more flexible
— Can adjust to objects that are present

Outline

Hierarchical Bounding Volumes
Regular Grids

Octrees

BSP Trees

Quadtrees

» Generalization of binary trees in 2D

— Node (cell) is a square
— Recursively split into 4 equal sub-squares
— Stop subdivision based on number of objects

* Ray intersection has to traverse quadtree
* More difficult to step to next cell \

\

Octrees

» Generalization of quadtree in 3D
Each cell may be split into 8 equal sub-cells
Internal nodes store pointers to children
Leaf nodes store list of surfaces

Adapts well to non-homogeneous scenes

Assessment for Ray Tracing

* Grids
— Easy to implement
— Require a lot of memory
— Poor results for non-homogeneous scenes
Octrees
— Better on most scenes (more adaptive)

Alternative: nested grids

Spatial subdivision expensive for animations

Hierarchical bounding volumes

— Natural for hierarchical objects
— Better for dynamic scenes

Other Spatial Subdivision Techniques

* Relax rules for quadtrees and octrees

* k-dimensional tree (k-d tree)
— Split at arbitrary interior point
— Split one dimension at a time
* Binary space partitioning tree (BSP tree)
— In 2 dimensions, split with any line
— In k dims. split with k-1 dimensional hyperplane
— Particularly useful for painter’ s algorithm
— Can also be used for ray tracing

Outline

Hierarchical Bounding Volumes
Regular Grids

Octrees

BSP Trees

BSP Trees

« Split space with any line (2D) or plane (3D)

* Applications
— Painters algorithm for hidden surface removal
— Ray casting

* Inherent spatial ordering given viewpoint
— Left subtree: in front, right subtree: behind

* Problem: finding good space partitions
— Proper ordering for any viewpoint
— How to balance the tree

Building a BSP Tree

 Use hidden surface removal as intuition
* Using line 1 or line 2 as root is easy

7

éfﬁ"/xﬁ’ b

% ffff//// //’//

A C

|
|
]

e

A C) jjliia;

a BSP tree
using 2 as root

the subdivision
of space it implies

< Viewpoint

Splitting of surfaces

* Using line 3 as root requires splitting

Line 2a ‘

/ wne 2b

< Viewpoint

Building a Good Tree

« Naive partitioning of n polygons yields O(n?3)
polygons (in 3D)

« Algorithms with O(n?) increase exist
— Try all, use polygon with fewest splits
— Do not need to split exactly along polygon planes

* Should balance tree
— More splits allow easier balancing
— Rebalancing?

Painter’ s Algorithm with BSP Trees

* Building the tree

— May need to split some polygons
— Slow, but done only once

 Traverse back-to-front or front-to-back
— Order is viewer-direction dependent

— What is front and what is back of each line changes
— Determine order on the fly

Details of Painter’ s Algorithm

 Eachface hasform Ax+By+Cz+ D

* Plug in coordinates and determine
— Positive: front side
— Zero: on plane
— Negative: back side

Back-to-front: inorder traversal, farther child first
Front-to-back: inorder traversal, near child first
Do backface culling with same sign test

Clip against visible portion of space (portals)

Clipping With Spatial Data Structures

* Accelerate clipping

— Goal: accept or reject whole sets of objects
— Can use an spatial data structures

» Scene should be mostly fixed

— Terrain fly-through viewing frustum

_ Gaming / \
~__ \

l/
S

Hierarchical bounding volumes Octrees

Data Structure Demos

« BSP Tree construction
http://symbolcraft.com/graphics/bsp/index.html

* KD Tree construction
http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

Real-Time and Interactive Ray Tracing

* |Interactive ray tracing via space subdivision

http://www.cs.utah.edu/~reinhard/eqwr/

« State of the art in interactive ray tracing nip:/

www.cs.utah.edu/~shirley/irt/

Summary

Hierarchical Bounding Volumes
Regular Grids

Octrees

BSP Trees

