
1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 17

Spatial Data Structures

 Hierarchical Bounding Volumes
 Regular Grids
 Octrees
 BSP Trees
 [Angel Ch. 8]

2

Ray Tracing Acceleration

•  Faster intersections
–  Faster ray-object intersections

•  Object bounding volume
•  Efficient intersectors

–  Fewer ray-object intersections
•  Hierarchical bounding volumes (boxes, spheres)
•  Spatial data structures
•  Directional techniques

•  Fewer rays
–  Adaptive tree-depth control
–  Stochastic sampling

•  Generalized rays (beams, cones)

3

Spatial Data Structures

•  Data structures to store geometric information
•  Sample applications

–  Collision detection
–  Location queries
–  Chemical simulations
–  Rendering

•  Spatial data structures for ray tracing
–  Object-centric data structures (bounding volumes)
–  Space subdivision (grids, octrees, BSP trees)
–  Speed-up of 10x, 100x, or more

4

Bounding Volumes

•  Wrap complex objects in simple ones
•  Does ray intersect bounding box?

–  No: does not intersect enclosed objects
–  Yes: calculate intersection with enclosed objects

•  Common types:

Axis-aligned
Bounding

Box (AABB)

Oriented
Bounding
Box (OBB)

Sphere Convex Hull 6-dop

5

Selection of Bounding Volumes

•  Effectiveness depends on:
–  Probability that ray hits bounding volume, but not

enclosed objects (tight fit is better)
–  Expense to calculate intersections with bounding

volume and enclosed objects
•  Amortize calculation of bounding volumes
•  Use heuristics

good

bad

6

Hierarchical Bounding Volumes

•  With simple bounding volumes, ray casting still
requires O(n) intersection tests

•  Idea: use tree data structure
–  Larger bounding volumes contain smaller ones etc.
–  Sometimes naturally available (e.g. human figure)
–  Sometimes difficult to compute

•  Often reduces complexity to O(log(n))

7

Ray Intersection Algorithm

•  Recursively descend tree
•  If ray misses bounding volume, no intersection
•  If ray intersects bounding volume, recurse with

enclosed volumes and objects
•  Maintain near and far bounds to prune further
•  Overall effectiveness depends on model and

constructed hierarchy

8

Spatial Subdivision

•  Bounding volumes enclose objects, recursively
•  Alternatively, divide space (as opposed to objects)
•  For each segment of space, keep a list of

intersecting surfaces or objects
•  Basic techniques:

Uniform
Spatial Sub

Quadtree/Octree kd-tree BSP-tree

9

Grids

•  3D array of cells (voxels) that tile space
•  Each cell points to all intersecting surfaces
•  Intersection

algorithm
steps from cell
to cell

10

Caching Intersection points

•  Objects can span multiple cells
•  For A need to test intersection only once
•  For B need to cache intersection and check

next cell for any closer intersection with
other objects

•  If not, C could be
missed (yellow ray)

A
B

C

11

Assessment of Grids

•  Poor choice when world is non-homogeneous
•  Grid resolution:

–  Too small: too many surfaces per cell
–  Too large: too many empty cells to traverse
–  Can use algorithms like Bresenham’s

for efficient traversal
•  Non-uniform spatial subdivision more flexible

–  Can adjust to objects that are present

12

Outline

•  Hierarchical Bounding Volumes
•  Regular Grids
•  Octrees
•  BSP Trees

13

Quadtrees

•  Generalization of binary trees in 2D
–  Node (cell) is a square
–  Recursively split into 4 equal sub-squares
–  Stop subdivision based on number of objects

•  Ray intersection has to traverse quadtree
•  More difficult to step to next cell

14

Octrees

•  Generalization of quadtree in 3D
•  Each cell may be split into 8 equal sub-cells
•  Internal nodes store pointers to children
•  Leaf nodes store list of surfaces
•  Adapts well to non-homogeneous scenes

15

Assessment for Ray Tracing

•  Grids
–  Easy to implement
–  Require a lot of memory
–  Poor results for non-homogeneous scenes

•  Octrees
–  Better on most scenes (more adaptive)

•  Alternative: nested grids
•  Spatial subdivision expensive for animations
•  Hierarchical bounding volumes

–  Natural for hierarchical objects
–  Better for dynamic scenes

16

Other Spatial Subdivision Techniques

•  Relax rules for quadtrees and octrees
•  k-dimensional tree (k-d tree)

–  Split at arbitrary interior point
–  Split one dimension at a time

•  Binary space partitioning tree (BSP tree)
–  In 2 dimensions, split with any line
–  In k dims. split with k-1 dimensional hyperplane
–  Particularly useful for painter’s algorithm
–  Can also be used for ray tracing

17

Outline

•  Hierarchical Bounding Volumes
•  Regular Grids
•  Octrees
•  BSP Trees

18

BSP Trees

•  Split space with any line (2D) or plane (3D)
•  Applications

–  Painters algorithm for hidden surface removal
–  Ray casting

•  Inherent spatial ordering given viewpoint
–  Left subtree: in front, right subtree: behind

•  Problem: finding good space partitions
–  Proper ordering for any viewpoint
–  How to balance the tree

19

Building a BSP Tree

•  Use hidden surface removal as intuition
•  Using line 1 or line 2 as root is easy

Line 2 Line 3

Line 1

Viewpoint

1
1

2

3

B A C D

a BSP tree
using 2 as root

A

B

D

C

3 2

the subdivision
of space it implies

20

Splitting of surfaces

•  Using line 3 as root requires splitting

Line 2a

Line 3

Line 1

Viewpoint

1

2a 2b

Line 2b

3

21

Building a Good Tree

•  Naive partitioning of n polygons yields O(n3)
polygons (in 3D)

•  Algorithms with O(n2) increase exist
–  Try all, use polygon with fewest splits
–  Do not need to split exactly along polygon planes

•  Should balance tree
–  More splits allow easier balancing
–  Rebalancing?

22

Painter’s Algorithm with BSP Trees

•  Building the tree
–  May need to split some polygons
–  Slow, but done only once

•  Traverse back-to-front or front-to-back
–  Order is viewer-direction dependent
–  What is front and what is back of each line changes
–  Determine order on the fly

23

Details of Painter’s Algorithm

•  Each face has form Ax + By + Cz + D
•  Plug in coordinates and determine

–  Positive: front side
–  Zero: on plane
–  Negative: back side

•  Back-to-front: inorder traversal, farther child first
•  Front-to-back: inorder traversal, near child first
•  Do backface culling with same sign test
•  Clip against visible portion of space (portals)

24

Clipping With Spatial Data Structures

•  Accelerate clipping
–  Goal: accept or reject whole sets of objects
–  Can use an spatial data structures

•  Scene should be mostly fixed
–  Terrain fly-through
–  Gaming

Hierarchical bounding volumes Octrees

viewing frustum

25

Data Structure Demos

•  BSP Tree construction
http://symbolcraft.com/graphics/bsp/index.html

•  KD Tree construction
 http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

26

Real-Time and Interactive Ray Tracing

•  Interactive ray tracing via space subdivision
http://www.cs.utah.edu/~reinhard/egwr/

•  State of the art in interactive ray tracing http://
www.cs.utah.edu/~shirley/irt/

27

Summary

•  Hierarchical Bounding Volumes
•  Regular Grids
•  Octrees
•  BSP Trees

