CSCI 420 Computer Graphics Lecture 24

Non-Photorealistic Rendering

Pen-and-ink Illustrations Painterly Rendering Cartoon Shading Technical Illustrations

Jernej Barbic University of Southern California

1

Goals of Computer Graphics

- · Traditional: Photorealism
- · Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization [Lecture next week]

cartoon shading

Non-Photorealistic Rendering

"A means of creating imagery that does not aspire to realism" - Stuart Green

Cassidy Curtis 1998

David Gainey

3

Non-photorealistic Rendering

Also called:

- Expressive graphics
- · Artistic rendering
- Non-realistic graphics

Source: ATI

- · Art-based rendering
- Psychographics

Some NPR Categories

- · Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art, etc.
- · Painterly rendering
 - Styles: impressionist, expressionist, pointilist, etc.
- · Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- · Scientific visualization
 - Methods: splatting, hedgehogs, etc.

Outline

- · Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- · Technical Illustrations

Hue Perception of "distinct" colors by humans Red Green Blue Yellow 0 60 120 180 240 300 360 Hue Scale

Strokes and Stroke Textures Stroke generated by moving along straight path Stroke perturbed by — Waviness function (straightness) — Pressure function (thickness) Collected in stroke textures — Tone dependent — Resolution dependent — Orientation dependent How automatic are stroke textures?

Indication

- · Selective addition of detail
- · Difficult to automate
- · User places detail segments interactively

Indication Example
Input without detail
With indication
Without indication

Outlines

- · Boundary or interior outlines
- · Accented outlines for shadowing and relief
- Dependence on viewing direction
- · Suggest shadow direction

Rendering Parametric Surfaces

• Stroke orientation and density

- Place strokes along isoparametric lines

- Choose density for desired tone

- tone = spacing / width

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

Painterly Rendering

- · Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes

24

Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

25

Computer-Generated Watercolor

- · Complex physical phenomena for artistic effect
- · Build simple approximations
- · Paper generation as random height field

· Simulated effects

26

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- · Paper saturation and capacity

· Discretize and use cellular automata

27

Interactive Painting User input Simulation in progress Finished painting

Automatic Painting Example

Hertzmann 1997

29

Automatic Painting from Images

- Start from color image: no 3D information
- · Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- · Layers are painted coarse-to-fine
- · Styles controlled by parameters

Painting Styles

- · Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- · Encapsulate parameter settings as style

32

Some Styles

- "Impressionist"
 - No random color, 4 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, 10 ≤ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- · "Pointilist"
 - Random factor ~0.75, 0 ≤ stroke length ≤ 0
 - Brush sizes 4, 2; approximation threshold 100
- Not completely convincing to artists (yet?)

3.4

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

Cartoon Shading

- Shading model in 2D cartoons
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Real-time techniques for games

Source: Alec Rivers

Outline

- · Pen-and-Ink Illustrations
- · Painterly Rendering
- · Cartoon Shading
- · Technical Illustrations

39

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details

Do not represent reality

Ruppel 1995

40

Conventions in Technical Illustrations

- · Black edge lines
- · Cool to warm shading colors
- · Single light source; shadows rarely used

41

Technical Illustration Example Phong shading (anisotropic) Edge lines (cool to warm shift gives better depth perception) Source: Bruce Gooch

The Future

- · Smart graphics
 - Design from the user's perspective
 - HCI, AI, Perception
- · Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

Summary

- Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- Employ them in novel ways
- Have fun!