
1

1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 15

Ray Tracing

 Ray Casting
 Shadow Rays
 Reflection and Transmission
 [Angel Ch. 11]

2

Local Illumination

•  Object illuminations are independent
•  No light scattering between objects
•  No real shadows, reflection, transmission
•  OpenGL pipeline uses this

3

Global Illumination

•  Ray tracing (highlights, reflection, transmission)
•  Radiosity (surface interreflections)
•  Photon mapping
•  Precomputed Radiance Transfer (PRT)

4

Object Space:

•  Graphics pipeline: for each object, render
–  Efficient pipeline architecture, real-time
–  Difficulty: object interactions (shadows, reflections, etc.)

•  Ray tracing: for each pixel, determine color
–  Pixel-level parallelism
–  Difficulty: very intensive computation, usually off-line

Image Space:

5

First idea: Forward Ray Tracing

•  Shoot (many) light rays from each light source
•  Rays bounce off the objects
•  Simulates paths of photons
•  Problem: many rays will

 miss camera and not
contribute to image!

•  This algorithm is not
practical

6

Backward Ray Tracing

•  Shoot one ray from camera
through each pixel in image plane

2

7

Generating Rays

•  Camera is at (0,0,0) and points
in the negative z-direction

•  Must determine coordinates of
image corners in 3D

8

Generating Rays

y

z x

side view

center of
projection
(COP)

image
plane

field of
view angle

(fov)

ray

frontal view

y

z x

h

w

aspect ratio = w / h

9

Generating Rays

y

z x

side view

COP

image
plane

field of
view angle

(fov)

y

z x

side view

image
plane

f = 1

y = tan(fov/2)
z = -1

y = -tan(fov/2)
z = -1

y = 0
z = 0

10

Generating Rays

frontal view

y

z x

h

w

a = aspect ratio = w / h

x = a tan(fov/2)
y = tan(fov/2)
z = -1

x = a tan(fov/2)
y = -tan(fov/2)
z = -1

x = -a tan(fov/2)
y = tan(fov/2)
z = -1

x = -a tan(fov/2)
y = -tan(fov/2)
z = -1

x = 0
y = 0
z = -1

11

Determining Pixel Color

1.  Phong model (local as before)
2.  Shadow rays
3.  Specular reflection
4.  Specular transmission

Steps (3) and (4) require
recursion.

12

Shadow Rays

•  Determine if light “really”
hits surface point

•  Cast shadow ray from
surface point to each light

•  If shadow ray hits
opaque object, no
contribution from
that light

•  This is essentially
improved diffuse
reflection

n

light source
camera

ray

shadow ray
(blocked)

image
plane

scene
object 1

scene
object 2

3

13

Phong Model

•  If shadow ray
can reach
to the light,
apply a standard
Phong model

n
l v

light source
camera

ray shadow ray
(unblocked)

image
plane

scene
object

14

Where is Phong model applied
in this example?
Which shadow rays are blocked?

15

Reflection Rays

•  For specular component of illumination
•  Compute reflection ray (recall: backward!)
•  Call ray tracer recursively to determine color

16

Angle of Reflection

•  Recall: incoming angle = outgoing angle
•  r = 2(l • n) n – l
•  Compute only for surfaces
 that are reflective

17

Reflections Example

www.yafaray.org
18

Transmission Rays

•  Calculate light transmitted through surfaces
•  Example: water, glass
•  Compute transmission ray
•  Call ray tracer recursively to determine color

4

19

Transmitted Light

•  Index of refraction is speed of light,
relative to speed of light in vacuum
–  Vacuum: 1.0 (per definition)
–  Air: 1.000277 (approximate to 1.0)
–  Water: 1.33
–  Glass: 1.49

•  Compute t using Snell’s law
–  ηl = index for upper material
–  ηt = index for lower material

20

Translucency

•  Most real objects are not transparent,
but blur the background image

•  Scatter light on other side of surface

•  Use stochastic sampling
(called distributed ray tracing)

21

Transmission + Translucency Example

www.povray.org
22

The Ray Casting Algorithm

•  Simplest case of ray tracing
1.  For each pixel (x,y), fire a ray from COP through (x,y)
2.  For each ray & object, calculate closest intersection
3.  For closest intersection point p

–  Calculate surface normal
–  For each light source, fire shadow ray
–  For each unblocked shadow ray, evaluate local Phong model for

that light, and add the result to pixel color

•  Critical operations
–  Ray-surface intersections
–  Illumination calculation

23

Recursive Ray Tracing

•  Also calculate specular component
–  Reflect ray from eye on specular surface
–  Transmit ray from eye through transparent surface

•  Determine color of incoming ray by recursion
•  Trace to fixed depth
•  Cut off if contribution
 below threshold

24

Ray Tracing Assessment

•  Global illumination method
•  Image-based
•  Pluses

–  Relatively accurate shadows, reflections, refractions

•  Minuses
–  Slow (per pixel parallelism, not pipeline parallelism)
–  Aliasing
–  Inter-object diffuse reflections require many bounces

5

25

Raytracing Example I

www.yafaray.org
26

Raytracing Example II

www.povray.org

27

Raytracing Example III

www.yafaray.org

28

Raytracing Example IV

www.povray.org

29

Summary

•  Ray Casting
•  Shadow Rays and Local Phong Model
•  Reflection
•  Transmission

•  Next lecture: Geometric queries

