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Ray Tracing 

 Ray Casting 
 Shadow Rays 
 Reflection and Transmission    
 [Angel Ch. 11] 
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Local Illumination 

•  Object illuminations are independent 
•  No light scattering between objects 
•  No real shadows, reflection, transmission 
•  OpenGL pipeline uses this 
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Global Illumination 

•  Ray tracing (highlights, reflection, transmission) 
•  Radiosity (surface interreflections) 
•  Photon mapping 
•  Precomputed Radiance Transfer (PRT) 
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Object Space: 

•  Graphics pipeline: for each object, render 
–  Efficient pipeline architecture, real-time 
–  Difficulty: object interactions (shadows, reflections, etc.)  

•  Ray tracing: for each pixel, determine color 
–  Pixel-level parallelism 
–  Difficulty: very intensive computation, usually off-line 

Image Space: 
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First idea: Forward Ray Tracing 

•  Shoot (many) light rays from each light source 
•  Rays bounce off the objects 
•  Simulates paths of photons 
•  Problem: many rays will 

 miss camera and not  
contribute to image! 

•  This algorithm is not 
practical 
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Backward Ray Tracing 

•  Shoot one ray from camera 
through each pixel in image plane 
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Generating Rays 

•  Camera is at (0,0,0) and points  
in the negative z-direction 

•  Must determine coordinates of  
image corners in 3D 
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Generating Rays 
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Generating Rays 
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Generating Rays 
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Determining Pixel Color 

1.  Phong model (local as before) 
2.  Shadow rays 
3.  Specular reflection 
4.  Specular transmission 

Steps (3) and (4) require 
recursion. 
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Shadow Rays 

•  Determine if light “really”  
hits surface point 

•  Cast shadow ray from  
surface point to each light 

•  If shadow ray hits  
opaque object, no  
contribution from  
that light 

•  This is essentially 
improved diffuse  
reflection 
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Phong Model 

•  If shadow ray 
can reach  
to the light,  
apply a standard  
Phong model 
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Where is Phong model applied  
in this example? 
Which shadow rays are blocked? 
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Reflection Rays 

•  For specular component of illumination 
•  Compute reflection ray (recall: backward!) 
•  Call ray tracer recursively to determine color 
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Angle of Reflection 

•  Recall: incoming angle = outgoing angle 
•  r = 2(l • n) n – l  
•  Compute only for surfaces 
   that are reflective 
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Reflections Example 

www.yafaray.org 
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Transmission Rays 

•  Calculate light transmitted through surfaces 
•  Example: water, glass 
•  Compute transmission ray 
•  Call ray tracer recursively to determine color 
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Transmitted Light 

•  Index of refraction is speed of light,  
relative to speed of light in vacuum 
–  Vacuum: 1.0 (per definition) 
–  Air: 1.000277 (approximate to 1.0) 
–  Water: 1.33 
–  Glass: 1.49 

•  Compute t using Snell’s law 
–   ηl = index for upper material 
–   ηt = index for lower material 
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Translucency 

•  Most real objects are not transparent, 
but blur the background image 

•  Scatter light on other side of surface 

•  Use stochastic sampling 
(called distributed ray tracing) 
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Transmission + Translucency Example 

www.povray.org 
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The Ray Casting Algorithm 

•  Simplest case of ray tracing 
1.  For each pixel (x,y), fire a ray from COP through (x,y) 
2.  For each ray & object, calculate closest intersection 
3.  For closest intersection point p 

–  Calculate surface normal 
–  For each light source, fire shadow ray 
–  For each unblocked shadow ray, evaluate local Phong model for 

that light, and add the result to pixel color 

•  Critical operations 
–  Ray-surface intersections 
–  Illumination calculation 
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Recursive Ray Tracing 

•  Also calculate specular component 
–  Reflect ray from eye on specular surface 
–  Transmit ray from eye through transparent surface 

•  Determine color of incoming ray by recursion 
•  Trace to fixed depth 
•  Cut off if contribution 
    below threshold 
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Ray Tracing Assessment 

•  Global illumination method 
•  Image-based 
•  Pluses 

–  Relatively accurate shadows, reflections, refractions 

•  Minuses 
–  Slow (per pixel parallelism, not pipeline parallelism) 
–  Aliasing 
–  Inter-object diffuse reflections require many bounces 
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Raytracing Example I 

www.yafaray.org 
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Raytracing Example II 

www.povray.org 
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Raytracing Example III 

www.yafaray.org 
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Raytracing Example IV 

www.povray.org 
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Summary 

•  Ray Casting 
•  Shadow Rays and Local Phong Model 
•  Reflection 
•  Transmission 

•  Next lecture: Geometric queries 


