
1

Jernej Barbic

CSCI 420 Computer Graphics
Lecture 4

Color and Hidden Surface Removal
Client/Server Model
Callbacks
Double Buffering
Physics of Color
Flat vs Smooth Shading
Hidden Surface Removal
[Angel Ch. 2]

University of Southern California

1

Physics of Color

• Electromagnetic radiation
• Can see only a tiny piece of the spectrum

Color Filters

• Eye can perceive only 3 basic colors
• Computer screens designed accordingly

Amplitude

B

Wavelength [nanometer]

G

R

Source: Vos & Walraven

Color Spaces

• RGB (Red, Green, Blue)
– Convenient for display
– Can be unintuitive (3 floats in OpenGL)

• HSV (Hue, Saturation, Value)
– Hue: what color
– Saturation: how far away from gray
– Value: how bright

• Other formats for movies and printing

R

R

B

G

G

B

V

S
H

R
G

B

RGB vs HSV
Gimp Color Picker

Flat vs Smooth Shading

Flat Shading Smooth Shading

2

Flat vs Smooth Shading
color of last vertex each vertex separate color

smoothly interpolated

glShadeModel(GL_FLAT) glShadeModel(GL_SMOOTH)
Compatibility profile: Compatibility profile:

Core profile: use interpolation qualifiers in the fragment shader

Viewport

• Determines clipping in window coordinates
• glViewport(x, y, w, h) (usually in reshape function)

Client/Server Model

• Graphics hardware and caching

• Important for efficiency
• Need to be aware where data are stored
• Graphics driver code is on the CPU
• Rendering resources (buffers, shaders,

textures, etc.) are on the GPU 9

CPU GPU
�Client� �Server�

The CPU-GPU bus

10

CPU GPUcan also read back

Fast, but limited bandwidth
PCI, PCI Express

Buffer Objects

• Store rendering data: vertex positions, normals,
texture coordinates, colors,
vertex indices, etc.

• Optimize and store on server (GPU)

11

CPU GPU
�Client� �Server�

Store here

bus

Vertex Buffer Objects

• Caches vertex geometric data:
positions, normals, texture coordinates, colors

• Optimize and store on server (GPU)
• Required for core OpenGL profile

12

/* vertices of the quad (will form two triangles;
rendered via GL_TRIANGLES) */

float positions[6][3] =
{{-1.0, -1.0, -1.0}, {1.0, -1.0, -1.0}, {1.0, 1.0, -1.0},
{-1.0, -1.0, -1.0}, {1.0, 1.0, -1.0}, {-1.0, 1.0, -1.0}};

/* colors to be assigned to vertices (4th value is the alpha channel) */
float colors[6][4] =
{{0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0}, {0.0, 1.0, 0.0, 1.0},
{0.0, 0.0, 1.0, 1.0}, {1.0, 1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0}};

3

Vertex Buffer Object: Initialization

13

GLuint vbo;

void initVBO()
{
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(positions) + sizeof(colors),
nullptr, GL_STATIC_DRAW); // init VBO’s size, but don’t assign any data to it

// upload position data
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(positions), positions);

// upload color data
glBufferSubData(GL_ARRAY_BUFFER, sizeof(positions), sizeof(colors), colors);

}

Element Arrays
• Draw cube with 6*2*3=36 or with 8 vertices?
• Expense in drawing and transformation
• Triangle strips help to some extent
• Element arrays provide general solution
• Define (transmit) array of vertices, colors, normals
• Draw using index into array(s) :

// (must first set up the GL_ELEMENT_ARRAY_BUFFER) …
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);

• Vertex sharing for efficient operations
• Extra credit for first assignment

14

GLUT Program with Callbacks

15

Initialization

START

Idle()

Display() Keyboard(..) Menu(..)

Mouse(..)Motion(..)Reshape(..)

END

Main event loop

Main Event Loop

• Standard technique for interaction
(GLUT, Qt, wxWidgets, ...)

• Main loop processes events

• Dispatch to functions specified by client

• Callbacks also common in operating systems

• “Poor man’s functional programming”

16

Types of Callbacks

• Display () : when window must be drawn
• Idle () : when no other events to be handled
• Keyboard (unsigned char key, int x, int y) : key pressed
• Menu (...) : after selection from menu
• Mouse (int button, int state, int x, int y) : mouse button
• Motion (...) : mouse movement
• Reshape (int w, int h) : window resize
• Any callback can be NULL

17

Screen Refresh

•
•
•
•

Common: 60-100 Hz
Flicker if drawing overlaps screen refresh
Problem during animation
Solution: use two separate frame buffers:

– Draw into one buffer
– Swap and display, while drawing into other buffer

• Desirable frame rate >= 30 fps (frames/second)

18

4

Enabling Single/Double Buffering
• glutInitDisplayMode(GLUT_SINGLE);
• glutInitDisplayMode(GLUT_DOUBLE);

• Single buffering:
Must call glFinish() at the end of Display()

• Double buffering:
Must call glutSwapBuffers() at the end of Display()

• Must call glutPostRedisplay() at the end of Idle()

• If something in OpenGL has no effect or does
not work, check the modes in glutInitDisplayMode

19

Hidden Surface Removal

• Classic problem of computer graphics
• What is visible after clipping and projection?

• Object-space vs image-space approaches
• Object space: depth sort (Painter’s algorithm)
• Image space: z-buffer algorithm

• Related: back-face culling

20

Object-Space Approach

• Consider objects pairwise

• Painter’s algorithm: render back-to-front
• “Paint” over invisible polygons
• How to sort and how to test overlap?

21

Depth Sorting

• First, sort by furthest distance z from viewer
• If minimum depth of A is greater than maximum
depth of B, A can be drawn before B

• If either x or y extents do not overlap, A and B
can be drawn independently

22

Some Difficult Cases

• Sometimes cannot sort polygons!

• One solution: compute intersections & subdivide
• Do while rasterizing (difficult in object space)

Cyclic overlap Piercing Polygons

23

Painter’s Algorithm Assessment

• Strengths
– Simple (most of the time)
– Handles transparency well
– Sometimes, no need to sort (e.g., heightfield)

• Weaknesses
– Clumsy when geometry is complex
– Sorting can be expensive

• Usage
–PostScript interpreters
– OpenGL: not supported

(must implement Painter’s Algorithm manually)

24

5

Image-space approach

25

3D geometry Depth image
darker color is closer

Source: Wikipedia

Depth sensor camera

26

Image-Space Approach

• Raycasting: intersect ray with polygons

• O(k) worst case (often better)
• Images can be more jagged (need anti-aliasing) 27

The z-Buffer Algorithm

• z-buffer stores depth values z for each pixel
• Before writing a pixel into framebuffer:
– Compute distance z of pixel from viewer
– If closer, write and update z-buffer, otherwise discard

28

After rendering A:
A B

color depth

The z-Buffer Algorithm

• z-buffer stores depth values z for each pixel
• Before writing a pixel into framebuffer:
– Compute distance z of pixel from viewer
– If closer, write and update z-buffer, otherwise discard

29

After rendering A and B:
A B

color depth

z-Buffer Algorithm Assessment

• Strengths
– Simple (no sorting or splitting)
– Independent of geometric primitives

• Weaknesses
– Memory intensive (but memory is cheap now)
– Tricky to handle transparency and blending
– Depth-ordering artifacts

• Usage
– z-Buffering comes standard with OpenGL;

disabled by default; must be enabled

30

6

Depth Buffer in OpenGL

• glutInitDisplayMode(GLUT_DOUBLE |
GLUT_RGBA | GLUT_DEPTH);

• glEnable (GL_DEPTH_TEST);

• Inside Display():
glClear (GL_DEPTH_BUFFER_BIT);

• Remember all of these!
• Some “tricks” use z-buffer in read-only mode

31

Note for Mac computers

Must use the GLUT_3_2_CORE_PROFILE flag
to use the core profile:

glutInitDisplayMode(GLUT_3_2_CORE_PROFILE |
GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

32

Summary

• Client/Server Model
• Callbacks
• Double Buffering
• Physics of Color
• Flat vs Smooth Shading
• Hidden Surface Removal

33

