

Digital Differential Analyzer
Assume write_pixel(int x, int y, int value) for (i = x1; i <= x2; i++) { y += m; write_pixel(i, round(y), color); }
Problems:

Requires floating point addition
Missing pixels with steep slopes: slope restriction needed

6

7

8

Bresenham's Algorithm V • So $d_{k+1} = d_k - 2\Delta y$ if $d_k > 0$ • And $d_{k+1} = d_k - 2(\Delta y - \Delta x)$ if $d_k \le 0$ • Final (efficient) implementation: void draw_line(int x1, int y1, int x2, int y2) { int x, y = y0; int twice_dx = 2 * (x2 - x1), twice_dy = 2 * (y2 - y1); int twice_dx = 2 * (x2 - x1), twice_dy - twice_dx; int d = twice_dx / 2 - twice_dy; for (x = x1; x <= x2; x++) { write_pixel(x, y, color); if (d > 0) d -= twice_dy; }

Outline

- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

13

Scan Conversion of Polygons

- · Multiple tasks:
 - Filling polygon (inside/outside)
 - Pixel shading (color interpolation)
 - Blending (accumulation, not just writing)
 - Depth values (z-buffer hidden-surface removal)
 - Texture coordinate interpolation (texture mapping)

14

· Hardware efficiency is critical

· Approach 1: odd-even test

- Sort them left to right

· Parity rule: inside after

an odd number of

• For each scan line

• Many algorithms for filling (inside/outside)

Concave Polygons: Odd-Even Test

- Find all scan line/polygon intersections

- Fill the interior spans between intersections

Much fewer that handle all tasks well

14

13

15

- Implicitly if you are lucky
- · Most modern GPUs scan-convert only triangles

Flood Fill

- · Draw outline of polygon
- · Pick color seed
- · Color surrounding pixels and recurse
- · Must be able to test boundary and duplication
- · More appropriate for drawing than rendering

19

Aliasing

- · Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
 Effect

- Moire patterns

21

21

25

27

30

Summary

- · Scan Conversion for Polygons
 - Basic scan line algorithm
 - Convex vs concave
 - Odd-even rules, tessellation
- Antialiasing (spatial and temporal)
 - Area averaging
 - Supersampling
 - Stochastic sampling