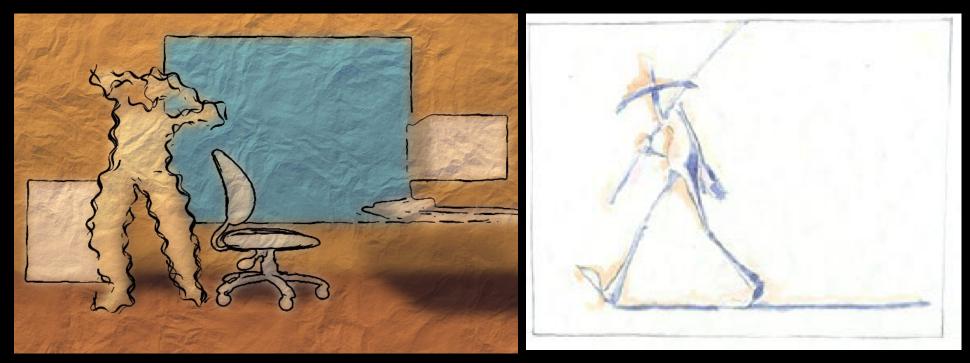
CSCI 420 Computer Graphics Lecture 24

Non-Photorealistic Rendering

Pen-and-ink Illustrations Painterly Rendering Cartoon Shading Technical Illustrations

Jernej Barbic University of Southern California

Goals of Computer Graphics

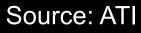

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization
 [Lecture next week]

cartoon shading

Non-Photorealistic Rendering

"A means of creating imagery that does not aspire to realism" - Stuart Green

Cassidy Curtis 1998


David Gainey

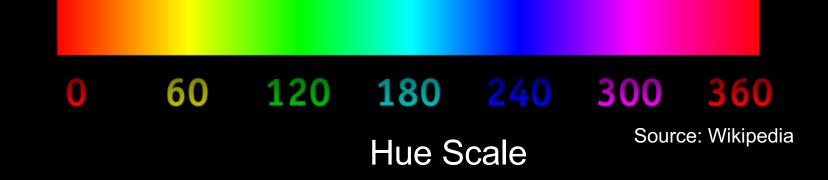
Non-photorealistic Rendering Also called:

Expressive graphics

Artistic rendering

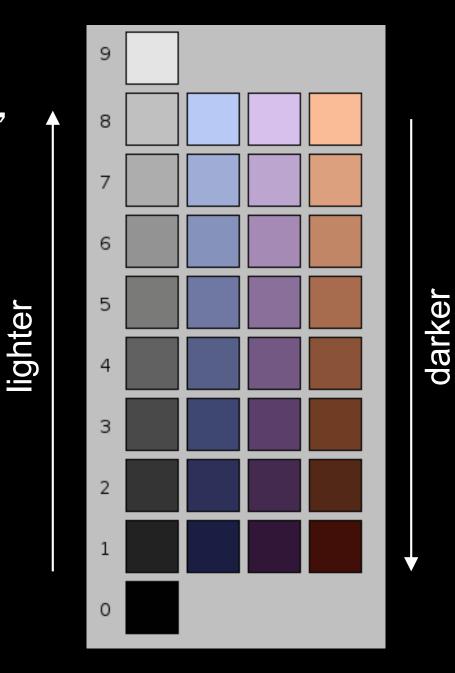
- Non-realistic graphics
- Art-based rendering
- Psychographics

Some NPR Categories

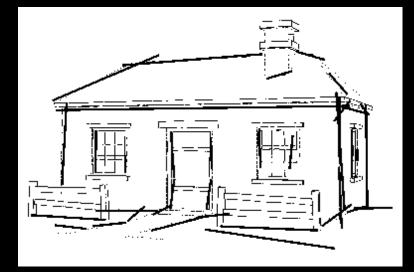

- Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art, etc.
- Painterly rendering
 - Styles: impressionist, expressionist, pointilist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
 - Methods: splatting, hedgehogs, etc.

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

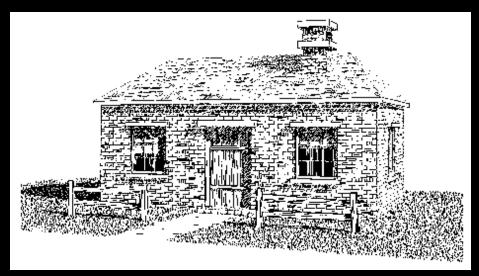

Hue

- Perception of "distinct" colors by humans
- Red Green
- Blue Yellow



Tone

- Perception of "brightness" of a color by humans
- Also called lightness
- Important in NPR



Pen-and-Ink Illustrations

Winkenbach and Salesin 1994

Pen-and-Ink Illustrations

Strokes

 Curved lines of varying thickness and density

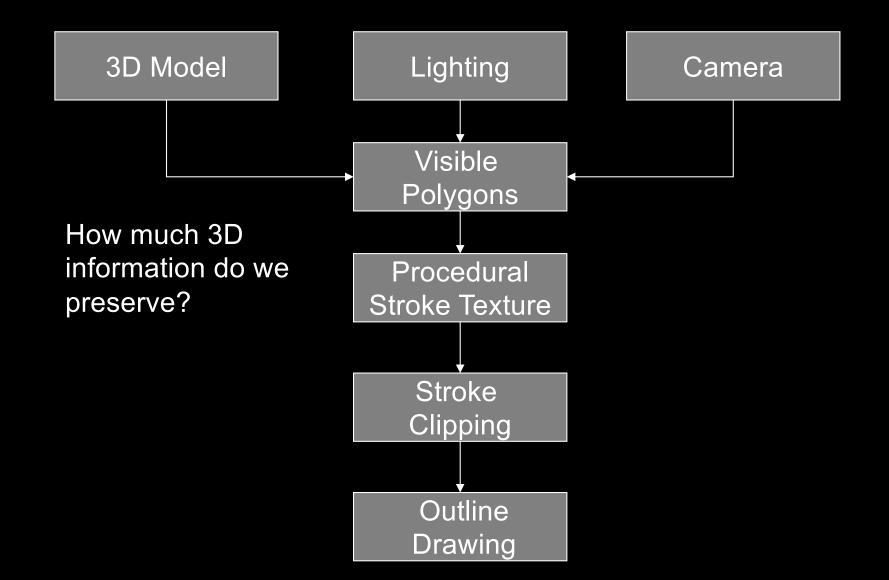
Texture

 Conveyed by collection of strokes

• Tone

 Perceived gray level across image or segment

Outline


 Boundary lines that disambiguate structure

Winkenbach and Salesin 1994

Rendering Pipeline: Polygonal Surfaces with NPR

Strokes and Stroke Textures

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?

Stroke Texture Examples

ga an an tao ing ang an tao ing ing an tao 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
· ·	
· · · · · · · · · · · · · · · · · · ·	

Winkenbach and Salesin 1994

Stroke Texture Operations

Scaling

┟┖╻┶┲╴┓╼╴
┲╼╌╘╼┚╼╌┰

	Ľ
/	
┎╍┰╸┲╾┲╼┲╌┍╼╦═┱╌╍╕┊╎╼╤╄╌╌┕╌	ī -
╶┠┱┶┲┶╍┶╍┶╍┶╌┵╌╴┥╴┊╼╴┖╼╾└╼╾	F
╎╘┓╗╘╦═┹╦═╤┙┱┺╤╧┧╴└──╷└╽╖└	
┢᠉ᡃᡃ᠉᠆᠇ᡄ᠋᠆᠆᠇᠆᠇᠆᠆᠋᠋᠋	Ŧ
	1
	т-
ليصاديك إرجابك المتعالية المتعالية المتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية	1_
┝┹┑╾╟┿┹┖┯╶┚┯╾┹┯╾╟┰┸┯╾┞╼┩╶╶╎ <u>╴╴</u> ╽ <u>╸</u> ╶╠╤ [╼]	=
╎┲┙╾╘╼┛╾┸┰┶┍┺╌┛╼┫╢╶╶╶╴╴ <u>╒╶</u> ═╴	Ī
┟╘┯╘╼┘┯╘┯┶╅┷┪┙┯╧┥┊┊═╘╦╾╚╤╸	
╎ <u>┣</u> ┲╵╼ <u>╘┹</u> ┲└╌ _┲ ┵╼┙┙	
┟╹┱┶╒╧┱┙┯╘╤┙┲╧┱┷┑┆╴└┯┟┯╺┕┍╼	ίĿ
	_

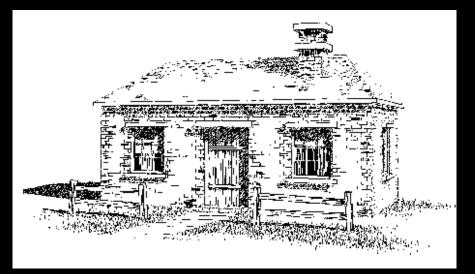
╎ <u></u> ╃┯└┯ᡛ╤┖┯┤┯┺┯┶┯┥
╎ <u>_</u> ╹ _┳ ╷└ _┯ ╷└╤╴╘╤╷ <u>┙</u> ╷╴└╷╌╵╎
┟┯┉┟┷╝┟═┯╍┖╼╤╴╟╧╍╌╘╼╤╌┡╶╌╶╧╌╸┥
╏╾┙╾┶╤╘╤╚╦┋╤┖╤┙╤╢
╎_┛┯╼┺╾ <u>╶</u> ╱╼┯╴┖╺┯┺ ^{╤╤} ┺╼┯╴╘┯╼╘┫
╎───┺┲ <u>╸┢╤</u> ╤╢╸┯╺┺╤╤╢╸┱╶┟╦╤┸╼╌╎
╎╴╷└╌╷╾┞╶╤╼╘╸╾╵╍┰╾┕╼╗╴┢┽╴┧╘╌╴╺└┤
╎━╷╨┙┰┥╼╖ᢢ╌┲╘╌┑╴╙╜╫╙╘╺═┸╼╌╎
╎ <u>╴┥╴╴└╴╼╢╟┶╘╴╤┶</u> ╶╾╘┍╾└╴╌┤ ╎╴╴╷╴╘╼╌┥╴╻╴╢╢┶╘╺╎╶╴╢

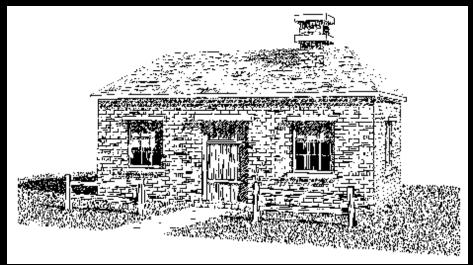

	╘──╘──╘	
Liei Zezla	┯┈┠═╤ [╌] ┖ _╼ ╻	
erel. L. Eil	╎┈┿╞═┯╌╎╴	
.∟=_=,∟ ⊮≟ <u> Ľ</u> ‼⊔		╘╾╍╘┲┷╘┙╵ ╤┞╍╼╢╴╴╽
14°.1.1 1.1.1.1	· I — • · · · · · · · · · · · · · · · · · ·	
1 1.	had the second	
	<u>10111111111111</u> 11111	
. Lw!!! =_t==!!!!!	 L[=== t_==1	
, Lu/U _ ,, 	\u_ <u> </u> []= E <u> _=</u>]	
, <u> </u> [b), <u> </u> <u>≥</u> t=≥ki, k <u>k= t=</u> _!:!!!	<u>\n`!` !!)</u> ![== <u>[==]</u> ! <u>-=[</u> !: _=[!!]	
, <u> </u> [b), <u> </u> <u>≥</u> t=≥ki, k <u>k= t=</u> _!:!!!	\u_ <u> </u> []= E <u> _=</u>]	

Changing Viewing Direction (Anisotropic)

Indication

- Selective addition of detail
- Difficult to automate
- User places detail segments interactively

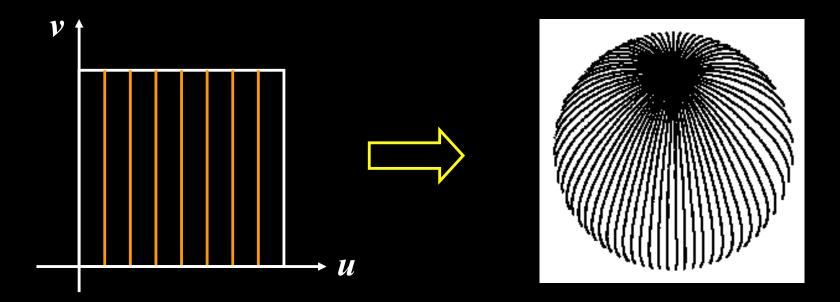

Indication Example



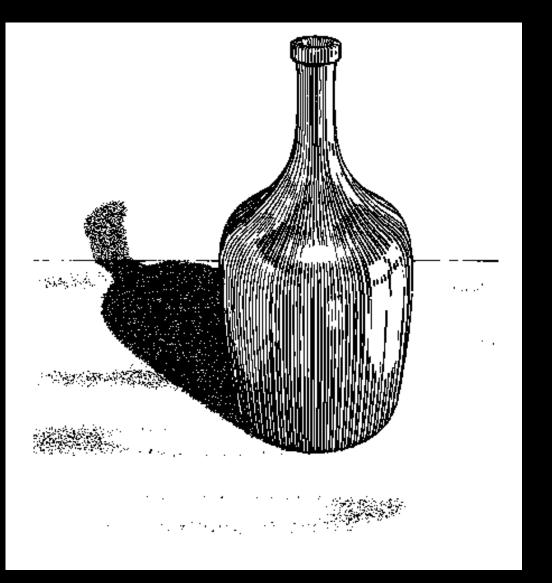
Input without detail

Without indication

With indication

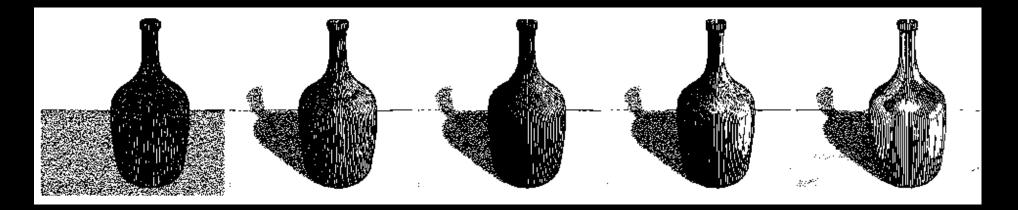


Outlines


- Boundary or interior outlines
- Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction

Rendering Parametric Surfaces

- Stroke orientation and density
 - Place strokes along isoparametric lines
 - Choose density for desired tone
 - tone = spacing / width



Parametric Surface Example

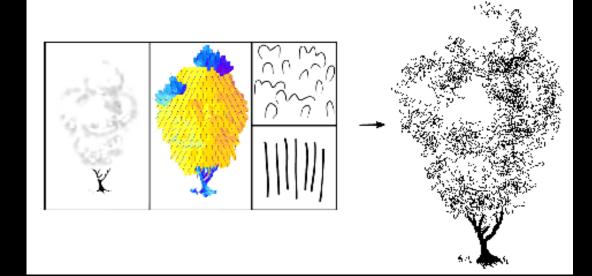
Winkenbach and Salesin 1996

Hatching + standard rendering

Constant-density hatching

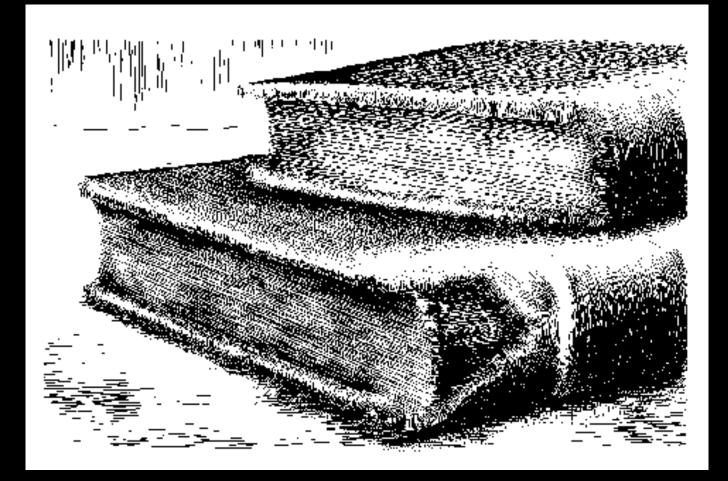
Longer smoother strokes for glass

Varying reflection coefficient


Smooth shading with single light

Environment mapping

Standard rendering techniques are still important!


Orientable Textures

- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Salisbury et al. 1997

Orientable Stroke Texture Example

Salisbury et al. 1997

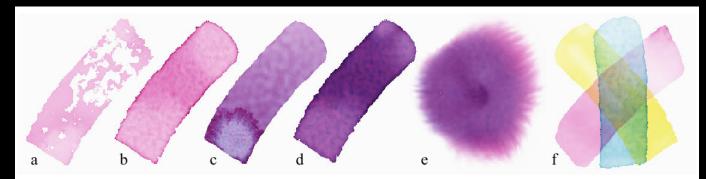
Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering

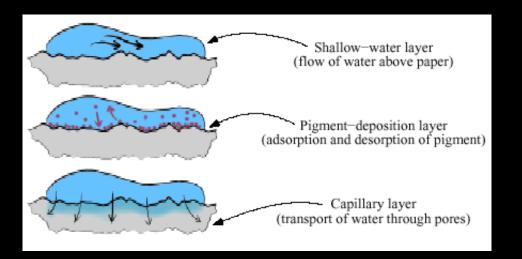
- Physical simulation
 - User applies brushstrokes
 - Computer simulates media (paper + ink)
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes

Physical Simulation Example

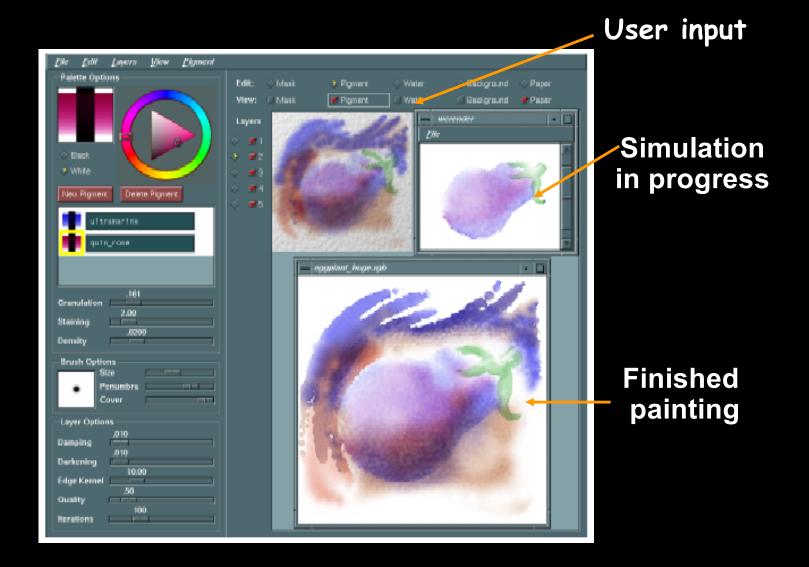

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field



Simulated effects


Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity

Discretize and use cellular automata

Interactive Painting

Automatic Painting Example

Hertzmann 1998

Automatic Painting from Images

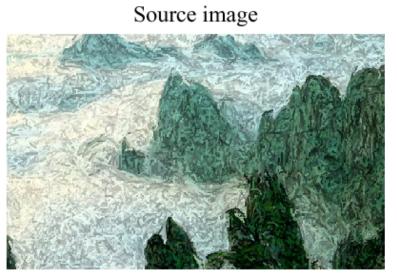
- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controlled by parameters

Layered Painting

Blurring

Adding detail with smaller strokes

Painting Styles


- Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- Encapsulate parameter settings as style

Style Examples

"Impressionist"

"Expressionist"

"Pointillist"

Some Styles

- "Impressionist"
 - No random color, $4 \leq$ stroke length ≤ 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, $10 \le \text{stroke length} \le 16$
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor ~0.75, $0 \le \text{stroke length} \le 0$
 - Brush sizes 4, 2; approximation threshold 100
- Not completely convincing to artists (yet?)

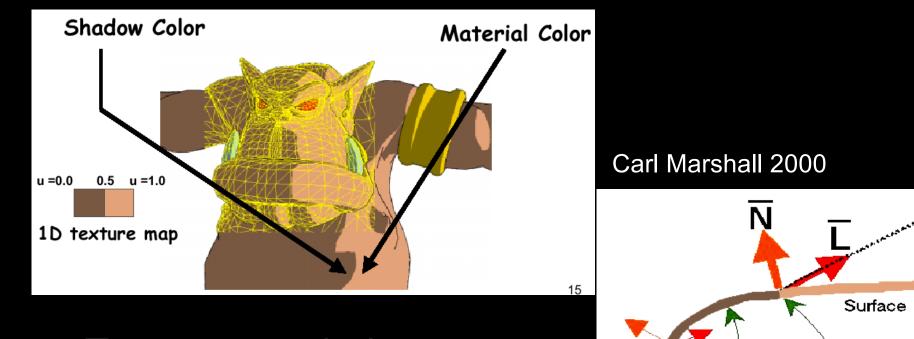
Automatic Painting Using Neural Networks

Wu et al. 2018

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Cartoon Shading

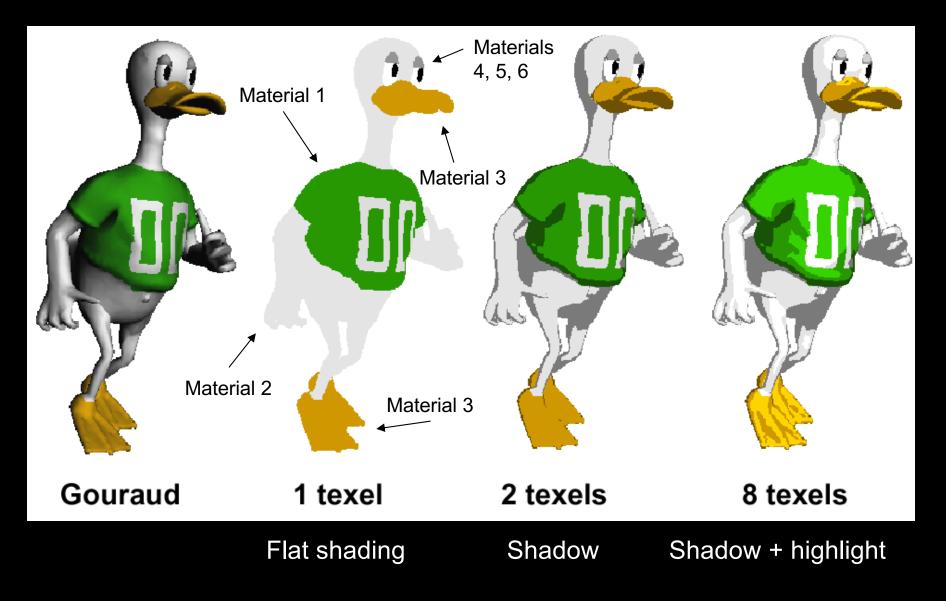

- Shading model in 2D cartoons
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Real-time techniques for games

Je la	00

Rivers et al. 2010

Cartoon Shading as Texture Map

Apply shading as 1D texture map

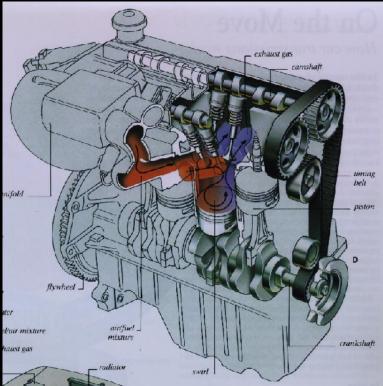


 Two-pass technique: Pass 1: standard shader Pass 2: use result from 1 as texture coordinates

0.0 0.25 **0.5** 0.75 **1.0**

Texture Map

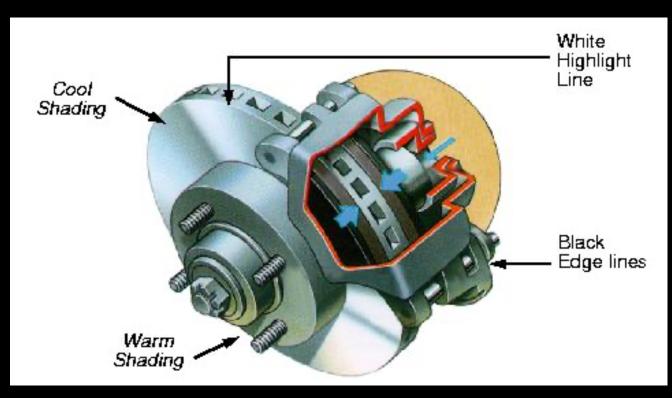
Shading Variations

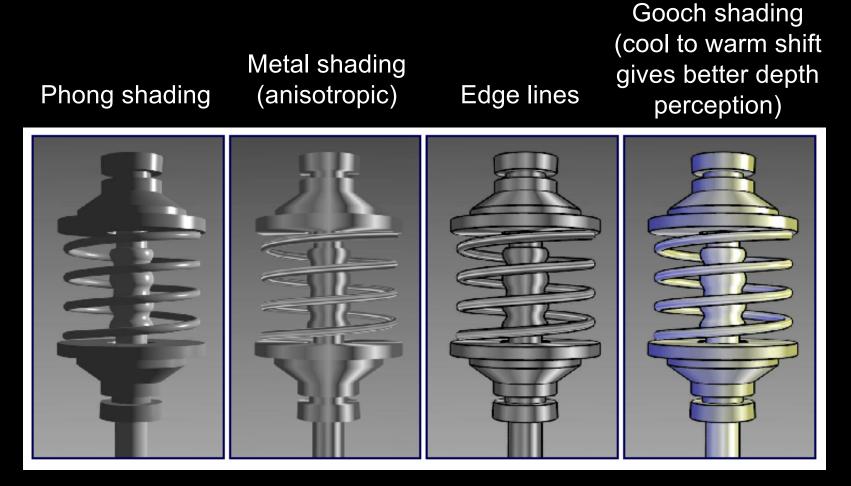

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details Ruppel 1995
- Do not represent reality




Photo

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Technical Illustration Example

Source: Bruce Gooch

The Future

- Smart graphics
 - Design from the user's perspective
 - HCI, AI, Perception
- Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

Summary

- Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- Employ them in novel ways
- Have fun!