## CS420 Assignment 3 Hints

## Ray Tracing



## Step 1: send rays



- Send out rays from camera position (0,0,0) pointing to -z
- Image size $640 \times 480$
- For debugging, use smaller size
- Send out rays from camera position (0,0,0) pointing to -z
- Image size $640 \times 480$
- For debugging, use smaller size


## Step 2: Intersect with scene

- Sphere \& triangle
- Analytical solution


## Debugging

- Do step by step
- Intersect with sphere, test code
- Intersect with triangle, test code
- Compute sphere color, test code
- Compute triangle color, test code


## Tips

- Ensure B != 0 when dividing A / B
- Before calling sqrt(x), make sure $x>=0$
- Remember to normalize the direction vector
- Remember to check len(dir) != 0 before dividing by the length


## Tips

- Distinguish between normals:
- normal of a triangle
- vertex normal
- normal interpolated from vertex normals


## Tips

- Floating-point operations are not accurate:

A shadow ray is "blocked" only if
$\operatorname{dist}(\mathrm{P}, \mathrm{Q})>$ smallValue
(as opposed to: $\operatorname{dist}(P, Q)>0)$


- Otherwise, artifacts appear... (see next image)



## Extra Credits

- Super-sampling
- anti-aliasing
- can do adaptively: if some region is smooth, no need to super sampling
- Ray tracing
(1-ks)*localPhongColor + ks*colorOfReflectedRay
- You can also add refraction


## Extra Credit (Cont'd)

- Animation
- Soft shadows
- Parallel computing for faster rendering
- OpenMP: utilize multi-core CPUs
- Cuda: use GPU to do parallel computing

