CSCI 420 Computer Graphics

Lecture 16

Geometric Queries for Ray Tracing

Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11]

Jernej Barbic
University of Southern California

Ray-Surface Intersections

- Necessary in ray tracing
- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
- Spheres
- Planes
- Polygons
- Quadrics

Intersection of Rays

and Parametric Surfaces

- Ray in parametric form
- Origin $p_{0}=\left[\begin{array}{lll}x_{0} & y_{0} & z_{0}\end{array}\right]^{\top}$
- Direction d=[$\left.\begin{array}{lll}x_{d} & y_{d} & z_{d}\end{array}\right]^{\top}$
- Assume d is normalized $\left(x_{d}{ }^{2}+y_{d}{ }^{2}+z_{d}{ }^{2}=1\right)$
$-\operatorname{Ray} p(\mathrm{t})=\mathrm{p}_{0}+\mathbf{d} \mathrm{t}$ for $\mathrm{t}>0$
- Surface in parametric form
- Point $\mathbf{q}=\mathrm{g}(\mathrm{u}, \mathrm{v})$, possible bounds on u, v
- Solve $p_{0}+d \boldsymbol{t}=\mathrm{g}(\mathrm{u}, \mathrm{v})$
- Three equations in three unknowns (t, u, v)

Intersection of Rays and Implicit Surfaces

- Ray in parametric form
- Origin $p_{0}=\left[\begin{array}{lll}x_{0} & y_{0} & z_{0}\end{array}\right]^{\top}$
- Direction $d=\left[\begin{array}{lll}x_{d} & y_{d} & z_{d}\end{array}\right]^{\top}$
- Assume d normalized $\left(x_{d}{ }^{2}+y_{d}{ }^{2}+z_{d}{ }^{2}=1\right)$
$-\operatorname{Ray} p(\mathrm{t})=\mathrm{p}_{0}+\mathbf{d} \mathrm{t}$ for $\mathrm{t}>0$
- Implicit surface
- Given by f(q) $=0$
- Consists of all points \mathbf{q} such that $f(\mathbf{q})=0$
- Substitute ray equation for q : $f\left(p_{0}+d t\right)=0$
- Solve for t (univariate root finding)
- Closed form (if possible), otherwise numerical approximation

Ray-Sphere Intersection I

- Common and easy case
- Define sphere by
- Center c = $\left[\begin{array}{lll}x_{c} & y_{c} & z_{d}\end{array}\right]^{\top}$
- Radius r
- Surface $f(q)=\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}+\left(z-z_{c}\right)^{2}-r^{2}=0$
- Plug in ray equations for x, y, z :

$$
x=x_{0}+x_{d} t, \quad y=y_{0}+y_{d} t, \quad z=z_{0}+z_{d} t \mid
$$

- And we obtain a scalar equation for t :

$$
\left(x_{0}+x_{d} t-x_{c}\right)^{2}+\left(y_{0}+y_{d} t-y_{c}\right)^{2}+\left(z_{0}+z_{d} t-z_{c}\right)^{2}=r^{2}
$$

Ray-Sphere Intersection II

- Simplify to

$$
a t^{2}+b t+c=0
$$

where

$$
\begin{gathered}
a=x_{d}^{2}+y_{d}^{2}+z_{d}^{2}=1 \quad \text { since }|d|=1 \\
b=2\left(x_{d}\left(x_{0}-x_{c}\right)+y_{d}\left(y_{0}-y_{c}\right)+z_{d}\left(z_{0}-z_{c}\right)\right) \\
c=\left(x_{0}-x_{c}\right)^{2}+\left(y_{0}-y_{c}\right)^{2}+\left(z_{0}-z_{c}\right)^{2}-r^{2}
\end{gathered}
$$

- Solve to obtain t_{0} and t_{1}

$$
t_{0,1}=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

Check if $\mathrm{t}_{0}, \mathrm{t}_{1}>0$ (ray) Return $\min \left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)$

Ray-Sphere Intersection III

- For lighting, calculate unit normal

- Negate if ray originates inside the sphere!
- Note possible problems with roundoff errors

Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
- Calculate b² - 4c, abort if negative
- Compute normal only for closest intersection
- Other similar optimizations

Ray-Quadric Intersection

- Quadric $f(p)=f(x, y, z)=0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG

Ray-Polygon Intersection I

- Assume planar polygon in 3D

1. Intersect ray with plane containing polygon
2. Check if intersection point is inside polygon

- Plane
- Implicit form: $a x+b y+c z+d=0$
- Unit normal: $\mathbf{n}=\left[\begin{array}{ll}a & b\end{array}\right]^{\top}$ with $a^{2}+b^{2}+c^{2}=1$
- Substitute:

$$
a\left(x_{0}+x_{d} t\right)+b\left(y_{0}+y_{d} t\right)+c\left(z_{0}+z_{d} t\right)+d=0
$$

- Solve:

$$
t=\frac{-\left(a x_{0}+b y_{0}+c z_{0}+d\right)}{a x_{d}+b y_{d}+c z_{d}}
$$

Ray-Polygon Intersection II

- Substitute t to obtain intersection point in plane
- Rewrite using dot product

$$
t=\frac{-\left(a x_{0}+b y_{0}+c z_{0}+d\right)}{a x_{d}+b y_{d}+c z_{d}}=\frac{-\left(n \cdot p_{0}+d\right)}{n \cdot d}
$$

- If $\mathbf{n} \bullet \mathbf{d}=0$, no intersection (ray parallel to plane)
- If $\mathrm{t} \leq 0$, the intersection is behind ray origin

Test if point inside polygon

- Could use even-odd rule, or winding rule
- Easier if polygon is in 2D (project from 3D to 2D)
- Easier for triangles (tessellate polygons)

Point-in-triangle testing

- Critical for polygonal models
- Project the triangle, and point of plane intersection, onto one of the planes
$x=0, y=0$, or $z=0$
(pick a plane not perpendicular to triangle) (such a choice always exists)
- Then, do the 2D test in the plane, by computing barycentric coordinates (follows next)

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric Coordinates

Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates
- Yields same answer as scan conversion

Barycentric Coordinates in 1D

- Linear interpolation
$-p(\mathrm{t})=(1-\mathrm{t}) \mathrm{p}_{1}+\mathrm{t} \mathrm{p}_{2}, 0 \leq \mathrm{t} \leq 1$
$-p(t)=\alpha p_{1}+\beta p_{2}$ where $\alpha+\beta=1$
$-\mathbf{p}$ is between \mathbf{p}_{1} and \mathbf{p}_{2} iff $0 \leq \alpha, \beta \leq 1$
- Geometric intuition
- Weigh each vertex by ratio of distances from ends

- α, β are called barycentric coordinates

Barycentric Coordinates in 2D

- Now, we have 3 points instead of 2

- Define 3 barycentric coordinates, α, β, γ
- $\mathbf{p}=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3}$
- \mathbf{p} inside triangle iff $0 \leq \alpha, \beta, \gamma \leq 1, \alpha+\beta+\gamma=1$
- How do we calculate α, β, γ given p ?

Barycentric Coordinates for Triangle

- Coordinates are ratios of triangle areas

$$
\begin{aligned}
& \alpha=\frac{\operatorname{Area}\left(\mathbf{C C}_{\mathbf{1}} \mathbf{C}_{2}\right)}{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{2}\right)} \\
& \beta=\frac{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C C}_{2}\right)}{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{2}\right)} \\
& \gamma=\frac{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{1}} \mathbf{C}\right)}{\operatorname{Area}\left(\mathbf{C}_{0} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{2}\right)}=1-\alpha-\beta
\end{aligned}
$$

- Areas in these formulas should be signed, depending on clockwise (-) or anti-clockwise orientation (+) of the triangle! Very important for point-in-triangle test.

Negative Area

$$
\begin{aligned}
& \alpha=\frac{\operatorname{Area}\left(\mathbf{C C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}\right)}{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}\right)}>0 \\
& \beta=\frac{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{2}}\right)}{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{2}\right)}>0 \\
& \gamma=\frac{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{1}} \mathbf{C}\right)}{\operatorname{Area}\left(\mathbf{C}_{\mathbf{0}} \mathbf{C}_{\mathbf{1}} \mathbf{C}_{\mathbf{2}}\right)}<0
\end{aligned}
$$

Point C is outside of the triangle!

Computing Triangle Area in 3D

- Use cross product
- Parallelogram formula

- $\operatorname{Area}(\mathrm{ABC})=(1 / 2)|(\mathrm{B}-\mathrm{A}) \times(\mathrm{C}-\mathrm{A})|$
- How to get correct sign for barycentric coordinates?
- tricky, but possible:
compare directions of vectors $(B-A) \times(C-A)$, for triangles $\mathrm{CC}_{1} \mathrm{C}_{2}$ vs $\mathrm{C}_{0} \mathrm{C}_{1} \mathrm{C}_{2}$, etc.
(either 0 (sign+) or 180 deg (sign-) angle)
- easier alternative: project to 2D, use 2D formula
- projection to 2D preserves barycentric coordinates

Computing Triangle Area in 2D

- Suppose we project the triangle to xy plane
- $\operatorname{Area}(x y-p r o j e c t i o n(A B C))=$
$(1 / 2)\left(\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(c_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)\right)$
- This formula gives correct sign (important for barycentric coordinates)

Summary

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric Coordinates

