
1

1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 14

Rasterization
Scan Conversion
Antialiasing
[Angel Ch. 6]

1

2

Rasterization (scan conversion)

• Final step in pipeline: rasterization
• From screen coordinates (float) to

pixels (int)
• Writing pixels into frame buffer
• Separate buffers:

– depth (z-buffer),
– display (frame buffer),
– shadows (stencil buffer),
– blending (accumulation buffer)

2

3

Rasterizing a line

3

4

Digital Differential Analyzer (DDA)

• Represent line as

• Then, if Dx = 1 pixel,
we have Dy = m Dx = m

4

5

Digital Differential Analyzer

• Assume write_pixel(int x, int y, int value)

• Problems:
– Requires floating point addition
– Missing pixels with steep slopes:

slope restriction needed

for (i = x1; i <= x2; i++)
{

y += m;
write_pixel(i, round(y), color);

}

5

6

Digital Differential Analyzer (DDA)

• Assume 0 ≤ m ≤ 1
• Exploit symmetry
• Distinguish special

cases

But still requires
floating point additions!

6

2

7

Bresenham’s Algorithm I

• Eliminate floating point addition from DDA
• Assume again 0 ≤ m ≤ 1
• Assume pixel centers halfway between integers

7

8

Bresenham’s Algorithm II

• Decision variable a – b
– If a – b > 0 choose lower pixel
– If a – b ≤ 0 choose higher pixel

• Goal: avoid explicit computation of a – b
• Step 1: re-scale d = (x2 – x1)(a – b) = Dx(a – b)
• d is always integer

8

9

Bresenham’s Algorithm III

• Compute d at step k+1 from d at step k!
• Case: j did not change (dk > 0)

– a decreases by m, b increases by m
– (a – b) decreases by 2m = 2(Dy/Dx)
– Dx(a-b) decreases by 2Dy

9

10

Bresenham’s Algorithm IV

• Case: j did change (dk ≤ 0)
– a decreases by m-1, b increases by m-1
– (a – b) decreases by 2m – 2 = 2(Dy/Dx – 1)
– Dx(a-b) decreases by 2(Dy - Dx)

10

11

Bresenham’s Algorithm V

• So dk+1 = dk – 2Dy if dk > 0
• And dk+1 = dk – 2(Dy – Dx) if dk ≤ 0
• Final (efficient) implementation:

void draw_line(int x1, int y1, int x2, int y2) {
int x, y = y0;
int twice_dx = 2 * (x2 - x1), twice_dy = 2 * (y2 - y1);
int twice_dy_minus_twice_dx = twice_dy - twice_dx;
int d = twice_dx / 2 - twice_dy;

for (x = x1 ; x <= x2 ; x++) {
write_pixel(x, y, color);
if (d > 0) d -= twice_dy;
else {y++; d -= twice_dy_minus_twice_dx ;}

}
}

11

12

Bresenham’s Algorithm VI

• Need different cases to handle m > 1
• Highly efficient
• Easy to implement in hardware and software
• Widely used

12

3

13

Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing

13

14

Scan Conversion of Polygons

• Multiple tasks:
– Filling polygon (inside/outside)
– Pixel shading (color interpolation)
– Blending (accumulation, not just writing)
– Depth values (z-buffer hidden-surface removal)
– Texture coordinate interpolation (texture mapping)

• Hardware efficiency is critical
• Many algorithms for filling (inside/outside)
• Much fewer that handle all tasks well

14

15

Filling Convex Polygons

• Find top and bottom vertices
• List edges along left and right sides
• For each scan line from bottom to top

– Find left and right endpoints of span, xl and xr
– Fill pixels between xl and xr
– Can use Bresenham’s algorithm to update xl and xr

xl xr

15

16

Concave Polygons: Odd-Even Test

• Approach 1: odd-even test
• For each scan line

– Find all scan line/polygon intersections
– Sort them left to right
– Fill the interior spans between intersections

• Parity rule: inside after
an odd number of
crossings

16

17

Edge vs Scan Line Intersections

• Brute force: calculate intersections explicitly
• Incremental method (Bresenham’s algorithm)
• Caching intersection information

– Edge table with edges sorted by ymin
– Active edges, sorted by x-intersection, left to right

• Process image from
smallest ymin up

17

18

Concave Polygons: Tessellation

• Approach 2: divide non-convex, non-flat, or
non-simple polygons into triangles

• OpenGL specification
– Need accept only simple, flat, convex polygons
– Tessellate explicitly with tessellator objects
– Implicitly if you are lucky

• Most modern GPUs scan-convert only triangles

18

4

19

Flood Fill

• Draw outline of polygon
• Pick color seed
• Color surrounding pixels and recurse
• Must be able to test boundary and duplication
• More appropriate for drawing than rendering

19

20

Outline

• Scan Conversion for Lines
• Scan Conversion for Polygons
• Antialiasing

20

21

Aliasing

• Artifacts created during scan conversion
• Inevitable (going from

continuous to discrete)
• Aliasing (name from

digital signal processing):
we sample a continues
image at grid points

• Effect
– Jagged edges
– Moire patterns Moire pattern from

sandlotscience.com

21

22

More Aliasing

22

23

Antialiasing for Line Segments

• Use area averaging at boundary

• (a) is aliased; (b) is antialiased
• (c) is aliased + magnified
• (d) is antialiased + magnified

23

24

Antialiasing by Supersampling

• Mostly for off-line rendering
(e.g., ray tracing)

• Render, say, 3x3 grid of mini-pixels
• Average results using a filter
• Can be done adaptively

– Stop if colors are similar
– Subdivide at discontinuities

one
pixel

24

5

25

Supersampling Example

• Other improvements
– Stochastic sampling: avoid sample position repetitions
– Stratified sampling (jittering) :

perturb a regular grid of samples

25

26

Temporal Aliasing
• Sampling rate is frame rate (30 Hz for video)
• Example: spokes of wagon wheel in movies
• Solution: supersample in time and average

– Fast-moving objects
are blurred

– Happens automatically
with real hardware (photo
and video cameras)

• Exposure time is important
(shutter speed)

– Effect is called motion blur
Motion blur

26

27

Wagon Wheel Effect

Source: YouTube

27

28

Motion Blur Example

T. Porter, Pixar, 1984
16 samples / pixel / timestep

Achieve by
stochastic
sampling in
time

28

Depth of Field

29
digital-photography-school.com

Wide depth of field Narrow depth of field

29

30

Summary

• Scan Conversion for Polygons
– Basic scan line algorithm
– Convex vs concave
– Odd-even rules, tessellation

• Antialiasing (spatial and temporal)
– Area averaging
– Supersampling
– Stochastic sampling

30

