
1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 2

Introduction to OpenGL
OpenGL API
Core and Compatibility Profiles
Colors
[Angel Ch. 2]

1

What is OpenGL

• A low-level graphics library (API) for 2D and 3D
interactive graphics.

• Descendent of GL (from SGI)
• First version in 1992; now: 4.6 (released July 2017)
• Managed by Khronos Group (non-profit consortium)
• API is governed by Architecture Review Board

(part of Khronos)

2

Where is OpenGL used

3

• CAD

• Virtual reality

• Scientific visualization

• Flight simulation

• Video games

3

Graphics library (API)

4

• Intermediary between applications and
graphics hardware

• Other popular APIs:
Direct3D (Microsoft)
OpenGL ES (embedded devices)
X3D (successor of VRML)
Vulkan (more low-level than OpenGL)

4

OpenGL is cross-platform

• Same code works with little/no modifications

• Windows: default implementation ships with OS
Improved OpenGL: Nvidia or AMD drivers

• Linux: Mesa, a freeware implementation
Improved OpenGL: Nvidia or AMD drivers

• Mac: ships with the OS. Apple announced
deprecation in 2018, but OpenGL continues
to work.

5

Choice of Programming Language

• OpenGL lives close to the hardware
• OpenGL is not object-oriented
• OpenGL is not a functional language (as in, ML)
• Use C to expose and exploit low-level details
• Use C++, Java, ... for toolkits
• Support for C in assignments

6

2

OpenGL is cross-platform

Include file (OpenGL Compatibility Profile) :

7

OpenGL is cross-platform

Include file (OpenGL Core Profile) :

8

How does OpenGL work

From the programmer’s point of view:

1. Specify geometric objects

2. Describe object properties
• Color
• How objects reflect light

9

How does OpenGL work (continued)

3. Define how objects should be viewed
• where is the camera
• what type of camera

4. Specify light sources
• where, what kind

5. Move camera or objects
around for animation

10

The result

the result

11

OpenGL is a state machine

State variables: vertex buffers, camera
settings, textures, background color,
hidden surface removal settings,
the current shader program...

These variables (the state) then apply to
every subsequent drawing command.

They persist until set to new values
by the programmer.

12

3

Attributes:
color, shading and reflection properties

• Set before primitives are drawn

• Remain in effect until changed !

13

OpenGL Library Organization

• GL (Graphics Library): core graphics capabilities
• GLUT (OpenGL Utility Toolkit): input and windowing
• GLEW (Extension Wrangler): removes OS dependencies
• GLU (OpenGL Utility Library; compatibility profile only):

utilities on top of GL

OpenGL
application
program

GL

GLUT

Graphics
driver

Graphics
card

Computer
monitor

GLEW

14

Core vs Compatibility Profile

• Core Profile:
• “Modern” OpenGL
• Introduced in OpenGL 3.2 (August 2009)
• Optimized in modern graphics drivers
• Shader-based
• Used in our homeworks

• Compatibility Profile:
• “Classic” OpenGL
• Supports the “old” (pre-3.2) OpenGL API
• Fixed-function (non-shader) pipeline
• Not as optimized as Core Profile

15

Mixing core and compatibility profiles

• Windows, Linux:
Can mix core and compatibility profile OpenGL commands
! can lead to confusion

(is the specific OpenGL command optimized?)
! advantage: more flexible (can re-use old code)

• Mac:
Can only choose one profile (in each application)

16

Flat vs Smooth Shading

Flat Shading Smooth Shading

17

Flat vs Smooth Shading
color of last vertex each vertex separate color

smoothly interpolated

glShadeModel(GL_FLAT) glShadeModel(GL_SMOOTH)
Compatibility profile: Compatibility profile:

Core profile: use interpolation qualifiers in the fragment shader

18

4

Viewport

• Determines clipping in window coordinates
• glViewport(x, y, w, h) (usually in reshape function)

19

Summary

1. OpenGL API
2. Core and compatibility profiles
3. Colors
4. Flat and smooth shading

20

