
1

Jernej Barbic

CSCI 420 Computer Graphics
Lecture 4

Color and Hidden Surface Removal
 Client/Server Model
 Callbacks
 Double Buffering
 Physics of Color
 Flat vs Smooth Shading
 Hidden Surface Removal
 [Angel Ch. 2]

University of Southern California

1

1

Physics of Color

• Electromagnetic radiation
• Can see only a tiny piece of the spectrum

2

Color Filters

• Eye can perceive only 3 basic colors
• Computer screens designed accordingly

Amplitude

 B

Wavelength [nanometer]

G

R

Source: Vos & Walraven

3

Color Spaces

• RGB (Red, Green, Blue)
 – Convenient for display
 – Can be unintuitive (3 floats in OpenGL)

• HSV (Hue, Saturation, Value)
 – Hue: what color
 – Saturation: how far away from gray
 – Value: how bright

• Other formats for movies and printing

4

R

R

B

G

G

B

V

S
H

R
G

B

RGB vs HSV
 Gimp Color Picker

5

Client/Server Model

• Graphics hardware and caching

• Important for efficiency
• Need to be aware where data are stored
• Graphics driver code is on the CPU
• Rendering resources (buffers, shaders,

textures, etc.) are on the GPU 6

CPU GPU
“Client” “Server”

6

2

The CPU-GPU bus

7

CPU GPUcan also read back

Fast, but limited bandwidth
PCI, PCI Express

7

Buffer Objects

• Store rendering data: vertex positions, normals,
texture coordinates, colors,
vertex indices, etc.

• Optimize and store on server (GPU)

8

CPU GPU
“Client” “Server”

Store here

bus

8

Vertex Buffer Objects

• Caches vertex geometric data:
positions, normals, texture coordinates, colors

• Optimize and store on server (GPU)
• Required for core OpenGL profile

9

 /* vertices of the quad (will form two triangles;
 rendered via GL_TRIANGLES) */
 float positions[6][3] =
 {{-1.0, -1.0, -1.0}, {1.0, -1.0, -1.0}, {1.0, 1.0, -1.0},
 {-1.0, -1.0, -1.0}, {1.0, 1.0, -1.0}, {-1.0, 1.0, -1.0}};

 /* colors to be assigned to vertices (4th value is the alpha channel) */
 float colors[6][4] =
 {{0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0}, {0.0, 1.0, 0.0, 1.0},
 {0.0, 0.0, 1.0, 1.0}, {1.0, 1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0}};

9

Vertex Buffer Object: Initialization

10

int numVertices = 6;
VBO * vboVertices;
VBO * vboColors;

void initVBOs()
{
 // 3 values per vertex, namely x,y,z coordinates
 vboVertices = new VBO(numVertices, 3, positions, GL_STATIC_DRAW);

 // 4 values per vertex, namely r,g,b,a channels
 vboColors = new VBO(numVertices, 4, colors, GL_STATIC_DRAW);

}

10

Element Arrays
• Draw cube with 6*2*3=36 or with 8 vertices?
• Expense in drawing and transformation
• Triangle strips help to some extent
• Element arrays provide general solution
• Define (transmit) array of vertices, colors, normals
• Draw using index into array(s) :

// (must first set up the GL_ELEMENT_ARRAY_BUFFER) …
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);

• Vertex sharing for efficient operations
• Extra credit for first assignment

11

11

GLUT Program with Callbacks

12

Initialization

START

Idle()

Display() Keyboard(..) Menu(..)

Mouse(..)Motion(..)Reshape(..)

END

Main event loop

12

3

Main Event Loop

• Standard technique for interaction
 (GLUT, Qt, wxWidgets, ...)

• Main loop processes events

• Dispatch to functions specified by client

• Callbacks also common in operating systems

• “Poor man’s functional programming”

13

13

Types of Callbacks

• Display () : when window must be drawn
• Idle () : when no other events to be handled
• Keyboard (unsigned char key, int x, int y) : key pressed
• Menu (...) : after selection from menu
• Mouse (int button, int state, int x, int y) : mouse button
• Motion (...) : mouse movement
• Reshape (int w, int h) : window resize
• Any callback can be NULL

14

14

Screen Refresh

•
•
•
•

Common: 60-100 Hz
Flicker if drawing overlaps screen refresh
Problem during animation
Solution: use two separate frame buffers:
– Draw into one buffer

 – Swap and display, while drawing into other buffer
• Desirable frame rate >= 30 fps (frames/second)

15

15

Enabling Single/Double Buffering
• glutInitDisplayMode(GLUT_SINGLE);
• glutInitDisplayMode(GLUT_DOUBLE);

• Single buffering:
Must call glFinish() at the end of Display()

• Double buffering:
Must call glutSwapBuffers() at the end of Display()

• Must call glutPostRedisplay() at the end of Idle()

• If something in OpenGL has no effect or does
not work, check the modes in glutInitDisplayMode

16

16

Hidden Surface Removal

• Classic problem of computer graphics
• What is visible after clipping and projection?

• Object-space vs image-space approaches
• Object space: depth sort (Painter’s algorithm)
• Image space: z-buffer algorithm

• Related: back-face culling

17

17

Object-Space Approach

• Consider objects pairwise

• Painter’s algorithm: render back-to-front
• “Paint” over invisible polygons
• How to sort and how to test overlap?

18

18

4

Depth Sorting

• First, sort by furthest distance z from viewer
• If minimum depth of A is greater than maximum
 depth of B, A can be drawn before B

• If either x or y extents do not overlap, A and B
 can be drawn independently

19

19

Some Difficult Cases

• Sometimes cannot sort polygons!

• One solution: compute intersections & subdivide
• Do while rasterizing (difficult in object space)

Cyclic overlap Piercing Polygons

20

20

Painter’s Algorithm Assessment

• Strengths
 – Simple (most of the time)
 – Handles transparency well
 – Sometimes, no need to sort (e.g., heightfield)
• Weaknesses
 – Clumsy when geometry is complex
 – Sorting can be expensive
• Usage
 – PostScript interpreters
 – OpenGL: not supported
 (must implement Painter’s Algorithm manually)

21

21

Image-space approach

22

3D geometry Depth image

darker color is closer
Source: Wikipedia

22

Depth sensor camera

23

23

Image-Space Approach

• Raycasting: intersect ray with polygons

• O(k) worst case (often better)
• Images can be more jagged (need anti-aliasing) 24

24

5

The z-Buffer Algorithm

• z-buffer stores depth values z for each pixel
• Before writing a pixel into framebuffer:
 – Compute distance z of pixel from viewer
 – If closer, write and update z-buffer, otherwise discard

25

After rendering A:
A B

color depth

25

The z-Buffer Algorithm

• z-buffer stores depth values z for each pixel
• Before writing a pixel into framebuffer:
 – Compute distance z of pixel from viewer
 – If closer, write and update z-buffer, otherwise discard

26

After rendering A and B:
A B

color depth

26

z-Buffer Algorithm Assessment

• Strengths
 – Simple (no sorting or splitting)
 – Independent of geometric primitives
• Weaknesses
 – Memory intensive (but memory is cheap now)
 – Tricky to handle transparency and blending
 – Depth-ordering artifacts
• Usage
 – z-Buffering comes standard with OpenGL;
 disabled by default; must be enabled

27

27

Depth Buffer in OpenGL

• glutInitDisplayMode(GLUT_DOUBLE |
 GLUT_RGBA | GLUT_DEPTH);
• glEnable (GL_DEPTH_TEST);

• Inside Display():
 glClear (GL_DEPTH_BUFFER_BIT);

• Remember all of these!
• Some “tricks” use z-buffer in read-only mode

28

28

Note for Mac computers

Must use the GLUT_3_2_CORE_PROFILE flag
to use the core profile:

 glutInitDisplayMode(GLUT_3_2_CORE_PROFILE |
GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);

29

29

Summary

• Client/Server Model
• Callbacks
• Double Buffering
• Physics of Color
• Flat vs Smooth Shading
• Hidden Surface Removal

30

30

