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Physics of Color

•   Electromagnetic radiation
•   Can see only a tiny piece of the spectrum
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Color Filters

•   Eye can perceive only 3 basic colors
•   Computer screens designed accordingly
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Color Spaces

•   RGB (Red, Green, Blue)
 – Convenient for display
 – Can be unintuitive (3 floats in OpenGL)

•   HSV (Hue, Saturation, Value)
 – Hue: what color
 – Saturation: how far away from gray
 – Value: how bright

•   Other formats for movies and printing
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RGB vs HSV
 Gimp Color Picker
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Client/Server Model

•   Graphics hardware and caching

•   Important for efficiency
•   Need to be aware where data are stored
• Graphics driver code is on the CPU
• Rendering resources (buffers, shaders, 

textures, etc.) are on the GPU 6

CPU GPU
“Client” “Server”
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The CPU-GPU bus
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CPU GPUcan also read back

Fast, but limited bandwidth
PCI, PCI Express
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Buffer Objects

•   Store rendering data: vertex positions, normals, 
texture coordinates, colors, 
vertex indices, etc.  

•   Optimize and store on server (GPU)
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CPU GPU
“Client” “Server”

Store here

bus
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Vertex Buffer Objects

•   Caches vertex geometric data: 
positions, normals, texture coordinates, colors

•   Optimize and store on server (GPU)
• Required for core OpenGL profile

     

9

 /* vertices of the quad (will form two triangles;
        rendered via GL_TRIANGLES) */
 float positions[6][3] =
  {{-1.0, -1.0, -1.0}, {1.0, -1.0, -1.0}, {1.0, 1.0, -1.0},
   {-1.0, -1.0, -1.0}, {1.0, 1.0, -1.0}, {-1.0, 1.0, -1.0}};

 /* colors to be assigned to vertices (4th value is the alpha channel) */
 float colors[6][4] =
  {{0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0}, {0.0, 1.0, 0.0, 1.0}, 
   {0.0, 0.0, 1.0, 1.0}, {1.0, 1.0, 0.0, 1.0}, {1.0, 0.0, 1.0, 1.0}};
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Vertex Buffer Object: Initialization   
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int numVertices = 6;
VBO * vboVertices;
VBO * vboColors;

void initVBOs()
{
  // 3 values per vertex, namely x,y,z coordinates
 vboVertices = new VBO(numVertices, 3, positions, GL_STATIC_DRAW); 

  // 4 values per vertex, namely r,g,b,a channels
 vboColors = new VBO(numVertices, 4, colors, GL_STATIC_DRAW); 

}
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Element Arrays
• Draw cube with 6*2*3=36 or with 8 vertices?
• Expense in drawing and transformation
• Triangle strips help to some extent
• Element arrays provide general solution
• Define (transmit) array of vertices, colors, normals
• Draw using index into array(s) :

// (must first set up the GL_ELEMENT_ARRAY_BUFFER) …
glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);

• Vertex sharing for efficient operations
• Extra credit for first assignment
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GLUT Program with Callbacks
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Initialization

START

Idle()

Display() Keyboard(..) Menu(..)

Mouse(..)Motion(..)Reshape(..)

END

Main event loop
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Main Event Loop

• Standard technique for interaction
   (GLUT, Qt, wxWidgets, ...)

• Main loop processes events

• Dispatch to functions specified by client

• Callbacks also common in operating systems

• “Poor man’s functional programming”
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Types of Callbacks

• Display ( ) : when window must be drawn
• Idle ( ) : when no other events to be handled
• Keyboard (unsigned char key, int x, int y) : key pressed
• Menu (...) : after selection from menu
• Mouse (int button, int state, int x, int y) : mouse button
• Motion (...) : mouse movement
• Reshape (int w, int h) : window resize
• Any callback can be NULL
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Screen Refresh

•
•
•
•

Common: 60-100 Hz
Flicker if drawing overlaps screen refresh
Problem during animation
Solution: use two separate frame buffers:
– Draw into one buffer

 – Swap and display, while drawing into other buffer
•   Desirable frame rate >= 30 fps (frames/second)
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Enabling Single/Double Buffering
• glutInitDisplayMode(GLUT_SINGLE);
• glutInitDisplayMode(GLUT_DOUBLE);

• Single buffering:
Must call glFinish() at the end of Display()

• Double buffering:
Must call glutSwapBuffers() at the end of Display()

• Must call glutPostRedisplay() at the end of Idle()

• If something in OpenGL has no effect or does
not work, check the modes in glutInitDisplayMode 
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Hidden Surface Removal

• Classic problem of computer graphics
• What is visible after clipping and projection?

• Object-space vs image-space approaches
• Object space: depth sort (Painter’s algorithm)
• Image space:  z-buffer algorithm

• Related: back-face culling
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Object-Space Approach

•   Consider objects pairwise

• Painter’s algorithm: render back-to-front
• “Paint” over invisible polygons
• How to sort and how to test overlap?
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Depth Sorting

•  First, sort by furthest distance z from viewer
•  If minimum depth of A is greater than maximum
 depth of B, A can be drawn before B

•  If either x or y extents do not overlap, A and B
 can be drawn independently
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Some Difficult Cases

•   Sometimes cannot sort polygons!

•   One solution: compute intersections & subdivide
•   Do while rasterizing (difficult in object space)

Cyclic overlap Piercing Polygons
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Painter’s Algorithm Assessment

•   Strengths
 – Simple (most of the time)
 – Handles transparency well
 – Sometimes, no need to sort (e.g., heightfield)
•   Weaknesses
 – Clumsy when geometry is complex
 – Sorting can be expensive
•   Usage
 – PostScript interpreters
 – OpenGL: not supported
        (must implement Painter’s Algorithm manually)
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Image-space approach
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3D geometry Depth image

darker color is closer
Source: Wikipedia
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Depth sensor camera
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Image-Space Approach

•   Raycasting: intersect ray with polygons

•   O(k) worst case (often better)
•   Images can be more jagged (need anti-aliasing) 24
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The z-Buffer Algorithm

•   z-buffer stores depth values z for each pixel
•   Before writing a pixel into framebuffer:
 – Compute distance z of pixel from viewer
 – If closer, write and update z-buffer, otherwise discard
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After rendering A:
A B

color depth
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The z-Buffer Algorithm

•   z-buffer stores depth values z for each pixel
•   Before writing a pixel into framebuffer:
 – Compute distance z of pixel from viewer
 – If closer, write and update z-buffer, otherwise discard
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After rendering A and B:
A B

color depth
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z-Buffer Algorithm Assessment

•   Strengths
 – Simple (no sorting or splitting)
 – Independent of geometric primitives
•   Weaknesses
 – Memory intensive (but memory is cheap now)
 – Tricky to handle transparency and blending
 – Depth-ordering artifacts
•   Usage
 – z-Buffering comes standard with OpenGL;
      disabled by default; must be enabled
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Depth Buffer in OpenGL

• glutInitDisplayMode(GLUT_DOUBLE  | 
      GLUT_RGBA | GLUT_DEPTH);
• glEnable (GL_DEPTH_TEST);

• Inside Display():
 glClear (GL_DEPTH_BUFFER_BIT);

• Remember all of these!
• Some “tricks” use z-buffer in read-only mode

28

28

Note for Mac computers

Must use the GLUT_3_2_CORE_PROFILE flag
to use the core profile:

 glutInitDisplayMode(GLUT_3_2_CORE_PROFILE  |
GLUT_DOUBLE  | GLUT_RGBA | GLUT_DEPTH);
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Summary

• Client/Server Model
• Callbacks
• Double Buffering
• Physics of Color
• Flat vs Smooth Shading
• Hidden Surface Removal
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