CSCl 420 Computer Graphics
Lecture 10
Splines

Jernej Barbic
University of Southern California

1

Modeling Complex Shapes

- We want to build models of very complicated objects
- Complexity is achieved using simple pieces
- polygons,
- parametric curves
and surfaces, or
- implicit curves and surfaces
- This lecture parametric curves

3

Curve Representations

- Explicit: $\mathrm{y}=\mathrm{f}(\mathrm{x}) \quad y=x^{2} \quad y=m x+b$
- Must be a function (single-valued)
- Big limitation-vertical lines?
- Parametric: $(x, y, z)=(f(u), g(u), h(u))$
+ Easy to specify, modify, control
- Extra "hidden" variable u, the parameter
$(x, y)=(\cos u, \sin u)$
- Implicit (2D): $f(x, y)=0$
$+y$ can be a multiple valued function of x
- Hard to specify, modify, control

$$
x^{2}+y^{2}-r^{2}=0
$$

5
moves you along a given curve in xyz space.

- Parameterization is not unique. It can be slow, fast, with continuous / discontinuous speed, clockwise (CW) or CCW...

Parameterization of a Curve

- Parameterization of a curve: how a change in u

What Do We Need From Curves in Computer Graphics?

- Local control of shape (so that easy to build and modify)
- Stability
- Smoothness and continuity
- Ability to evaluate derivatives
- Ease of rendering

4

7

9

Cubic Curves in 3D

- Cubic polynomial:
$-p(u)=a u^{3}+b u^{2}+c u+d=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right]\left[\begin{array}{llll}a & b & c & d\end{array}\right]^{\top}$
$-\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are 3 -vectors, u is a scalar
- Three cubic polynomials, one for each coordinate:
$-x(u)=a_{x} u^{3}+b_{x} u^{2}+c_{x} u+d_{x}$
$-y(u)=a_{y} u^{3}+b_{y} u^{2}+c_{y} u+d y$
$-z(u)=a z u^{3}+b_{z} u^{2}+c z u+d z$
- In matrix notation:

$$
\left[\begin{array}{lll}
x(u) & y(u) & z(u)
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right]
$$

- Or simply: $p=\left[u^{3} u^{2} u 1\right] A$

Splines: Piecewise Polynomials

- A spline is a piecewise polynomial: Curve is broken into consecutive segments, each of which is a low-degree polynomial interpolating (passing through) the control points
- Cubic piecewise polynomials are the most common:
- They are the lowest order polynomials that

a spline

1. interpolate two points and
2. allow the gradient at each point to be defined (C^{1} continuity is possible).

- Piecewise definition gives local control.
- Higher or lower degrees are possible, of course

8

Splines

- Types of splines:
- Hermite Splines
- Bezier Splines
- Catmull-Rom Splines
- Natural Cubic Splines
- B-Splines
- NURBS

- Splines can be used to model both curves and surfaces

10

Cubic Hermite Splines

Hermite Specification

We want a way to specify the end points and the slope at the end points!

Deriving Hermite Splines

- Four constraints: value and slope (in 3-D, position and tangent vector) at beginning and end of interval $[0,1]$:

$$
\begin{aligned}
& p(0)=p_{1}=\left(x_{1}, y_{1}, z_{1}\right) \\
& p(1)=p_{2}=\left(x_{2}, y_{2}, z_{2}\right) \\
& p^{\prime}(0)=\bar{p}_{1}=\left(\bar{x}_{1}, \bar{y}_{1}, \bar{z}_{1}\right) \\
& p^{\prime}(1)=\bar{p}_{2}=\left(\bar{x}_{2}, \bar{y}_{2}, \bar{z}_{2}\right)
\end{aligned}
$$

- Assume cubic form: $p(u)=a u^{3}+b u^{2}+c u+d$
- Four unknowns: a, b, c, d

13

15

17

Deriving Hermite Splines

- Assume cubic form: $p(u)=a u^{3}+b u^{2}+c u+d$
$p_{1}=p(0)=d$
$p_{2}=p(1)=a+b+c+d$
$\overline{p_{1}}=p^{\prime}(0)=c$
$\overline{p_{2}}=p^{\prime}(1)=3 a+2 b+c$
- Linear system: 12 equations for 12 unknowns (however, can be simplified to 4 equations for 4 unknowns)
- Unknowns: a, b, c, d (each of a, b, c, d is a 3-vector)

14

The Cubic Hermite Spline Equation

- After inverting the 4×4 matrix, we obtain:

- This form is typical for splines
-basis matrix and meaning of control matrix change with the spline type

16

Piecing together Hermite Splines

It's easy to make a multi-segment Hermite spline:

- each segment is specified by a cubic Hermite curve
- just specify the position and tangent at each "joint" (called knot)
- the pieces fit together with matched positions and first derivatives
- gives C1 continuity

18

19

The Bezier Spline Matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right]} \\
& \begin{array}{l}
\text { Hermite basis Bezier to Hermite Bezier } \\
{\left[\begin{array}{cccc}
-1 & 3 & -3 & 1
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right]}
\end{array} \\
& =\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right] \\
& \begin{array}{l}
1 \\
z_{2} \\
z_{4} \\
- \\
\text { atrix }
\end{array}
\end{aligned}
$$

21

23

Bezier Splines

- Variant of the Hermite spline
- Instead of endpoints and tangents, four control points
- points P1 and P4 are on the curve
- points P2 and P3 are off the curve
$-p(0)=P 1, p(1)=P 4$,
- $p^{\prime}(0)=3(P 2-P 1), p^{\prime}(1)=3(P 4-P 3)$
- Basis matrix is derived from the Hermite basis (or from scratch)
- Convex Hull property: curve contained within the convex hull of control points
- Scale factor " 3 " is chosen to make "velocity" approximately constant

20

22

Catmull-Rom Splines

- Roller-coaster (next programming assignment)
- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C^{1} continuity. Similar for Bezier. This gets tedious.
- Catmull-Rom: an interpolating cubic spline with built-in C^{1} continuity.
- Compared to Hermite/Bezier: fewer control points required, but less freedom.

Constructing the Catmull-Rom Spline

Suppose we are given n control points in 3-D: $p_{1}, p_{2}, \ldots, p_{n}$.

For a Catmull-Rom spline, we set the tangent at p_{i} to
$s^{*}\left(p_{i+1}-p_{i-1}\right)$ for $i=2, \ldots, n-1$, for some s (often $s=0.5$)
s is tension parameter: determines the magnitude (but not direction!) of the tangent vector at point p

What about endpoint tangents? Use extra control points p_{0}, p_{n+1}.

Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline.

Note: curve between p_{i} and p_{i+1} is completely determined by $p_{i-1}, p_{i}, p_{i+1}, p_{i+2}$

25

Splines with More Continuity?

- So far, only C^{1} continuity.
- How could we get C^{2} continuity at control points?
- Possible answers:
- Use higher degree polynomials degree 4 = quartic, degree $5=$ quintic, \ldots but these ge computationally expensive, and sometimes wiggly
- Give up local control \rightarrow natural cubic splines

A change to any control point affects the entire curve

- Give up interpolation \rightarrow cubic B-splines

Curve goes near, but not through, the control points

Catmull-Rom Spline Matrix

$$
\begin{array}{lll}
{\left[\begin{array}{lll}
x & y & z
\end{array}\right]=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]} & \left.\begin{array}{cccc}
-s & 2-s & s-2 & s \\
2 s & s-3 & 3-2 s & -s \\
-s & 0 & s & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
\text { basis } \left.\quad \begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3} \\
x_{4} & y_{4} & z_{4}
\end{array}\right]
\end{array}
$$

- Derived in way similar to Hermite and Bezier
- Parameter s is typically set to $\mathrm{s}=1 / 2$.

Comparison of Basic Cubic Splines

Type	Local Control	Continuity	Interpolation
Hermite	YES	C1	YES
Bezier	YES	C1	YES
Catmull-Rom	YES	C1	YES
Natural	NO	C2	YES
B-Splines	YES	C2	NO
Summary:			
Cannot get C2, interpolation and local control with cubics			

28

B-Splines

- Give up interpolation
- the curve passes near the control points
- best generated with interactive placement (because it's hard to guess where the curve will go)
- Curve obeys the convex hull property
- C2 continuity and local control are good
 compensation for loss of interpolation

30

31

How to Draw Spline Curves

- Basis matrix equation allows same code to draw any spline type
- Method 1: brute force
- Calculate the coefficients
- For each cubic segment, vary u from 0 to 1 (fixed step size)
- Plug in u value, matrix multiply to compute position on curve
- Draw line segment from last position to current position
-What's wrong with this approach?
- Draws in even steps of u
- Even steps of u does not mean even steps of x
- Line length will vary over the curve
- Want to bound line length
" too long: curve looks jagged
" too short: curve is slow to draw
33

Other Common Types of Splines

- Non-uniform Splines
- Non-Uniform Rational B-Splines (NURBS)
- NURBS are very popular and used in many commercial packages

Drawing Splines, 2

- Method 2: recursive subdivision - vary step size to draw short lines

Subdivide (u0,u1, maxlinelength)
umid $=(u 0+u 1) / 2$
$x 0=F(u 0)$
$\mathrm{x} 1=\mathrm{F}(\mathrm{u})$
if $|x 1-x 0|>$ maxlinelength Subdivide (u0, umid, maxlinelength)
Subdivide (umid, u1, maxlinelength) else drawline ($\mathrm{x} 0, \mathrm{x} 1$)

- Variant on Method 2 - subdivide based on curvature
- replace condition in "if" statement with straightness criterion
- draws fewer lines in flatter regions of the curve

Summary

- Piecewise cubic is generally sufficient
- Define conditions on the curves and their continuity
- Most important:
- basic curve properties
(what are the conditions, controls, and properties for each spline type)
- generic matrix formula for uniform cubic splines $p(u)=u$ B G
- given a definition, derive a basis matrix (do not memorize the matrices themselves)

