CSCI 420 Computer Graphics
Lecture 11

Lighting and Shading

Light Sources
Phong Illumination Model Normal Vectors
[Angel Ch. 5]

Jernej Barbic
University of Southern California

1

3

Restaurant Interior. Guillermo Leal, Evolucion Visual

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

2

4

Local lllumination

- Approximate model
- Local interaction between light, surface, viewer
- Phong model (this lecture): fast, supported in OpenGL
- GPU shaders
- Pixar Renderman (offline)

Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Color determined only based on surface normal, relative camera position and relative light position
- What effects does this ignore?

7

Normal Vectors

- Must calculate and specify the normal vector - Even in OpenGL!
- Two examples: plane and sphere

Normals of a Plane, Method II

- Method II: plane given by p_{0}, p_{1}, p_{2}
- Points must not be collinear
- Recall: $u \times v$ orthogonal to u and v
- $\mathrm{n}_{0}=\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right) \times\left(\mathrm{p}_{2}-\mathrm{p}_{0}\right)$
- Order of cross product determines orientation
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

8

Normals of a Plane, Method I

- Method I: given by ax + by $+c z+d=0$
- Let p_{0} be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: $u \cdot v=0$ if and only if u orthogonal to v
- $n \cdot\left(p-p_{0}\right)=n \cdot p-n \cdot p_{0}=0$
- Consequently $\mathrm{n}_{0}=\left[\begin{array}{lll}a & \mathrm{~b} & \mathrm{c}\end{array}\right]^{\top}$
- Normalize to $n=n_{0} /\left|n_{0}\right|$

10

Normals of Sphere

- Implicit Equation $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
- Vector form: $f(p)=p \cdot p-1=0$
- Normal given by gradient vector

$$
n_{0}=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
2 y \\
2 z
\end{array}\right]=2 p
$$

- Normalize $n_{0} /\left|n_{0}\right|=2 p / 2=p$

Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: $\boldsymbol{I}, \boldsymbol{n}$, and \boldsymbol{r} lie in the same plane
- Assume $|\||=|n|=1$, guarantee $| r|=1$

$$
\begin{aligned}
& \boldsymbol{I} \cdot \boldsymbol{n}=\cos (\theta)=\boldsymbol{n} \cdot \boldsymbol{r} \\
& \boldsymbol{r}=\alpha \boldsymbol{I}+\beta \boldsymbol{n}
\end{aligned}
$$

Solution: $\alpha=-1$ and
$\beta=2(1 \cdot n)$
$r=2(I \cdot n) n-I$

15

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

Normals Transformed by Modelview Matrix
Modelview matrix M (shear in this example)
Only keep linear transform in M (discard any translation).

14

Normals Transformed by Modelview Matrix (proof of $\left(M^{-1}\right)^{T}$ transform)

Point (x, y, z, w) is on a plane in 3D (homogeneous coordinates) if and only if
$a x+b y+c z+d w=0$, or $[a b c d][x y z w]^{\top}=0$.
Now, let's transform the plane by M.
Point (x, y, z, w) is on the transformed plane if and only if $\mathrm{M}^{-1}[\mathrm{xyzw}]^{\top}$ is on the original plane:
$[a b c d] M^{-1}[x \text { y z w }]^{\top}=0$.
So, equation of transformed plane is
[a' b' c' d'] [x y z w] ${ }^{\top}=0$, for
$\left[a^{\prime} b^{\prime} c^{\prime} d^{\prime}\right]^{\top}=\left(M^{-1}\right)^{\top}[a b c c d]^{\top}$.

Light Sources and Material Properties

- Appearance depends on
- Light sources, their locations and properties
- Material (surface) properties:

- Viewer position

Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in cent

19

Limitations of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- Similar problems with highlights
- Compensate with attenuation

$$
\begin{array}{ll}
\frac{1}{a+b q+c q^{2}} & \begin{array}{l}
\mathrm{q}=\text { distance }\left|\mathrm{p}-\mathrm{p}_{0}\right| \\
\mathrm{a}, \mathrm{~b}, \mathrm{c} \text { constants }
\end{array}
\end{array}
$$

- Softens lighting
- Better with ray tracing
- Better with radiosity

21

Spotight

- Light still emanates from point
- Cut-off by cone determined by angle θ

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

25

Phong Illumination Overview

1. Start with global ambient light $\left[G_{R} G_{G} G_{B}\right]$
2. Add contributions from each light source
3. Clamp the final result to $[0,1]$

- Calculate each color channel (R, G, B) separately
- Light source contributions decomposed into
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

27

Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient $k_{d} \geq 0$
- Angle of incoming light is important

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and $\mathbf{I}, \mathbf{n}, \mathbf{v}$:

I = unit vector to light source $\mathrm{n}=$ surface normal $\mathbf{v}=$ unit vector to viewer $\mathbf{r}=$ reflection of I at \mathbf{p}
(determined by I and \mathbf{n})

26

Ambient Reflection

$\mathrm{I}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \mathrm{L}_{\mathrm{a}}$

- Intensity of ambient light is uniform at every point
- Ambient reflection coefficient $k_{a} \geq 0$
- May be different for every surface and r, g, b
- Determines reflected fraction of ambient light
- $\mathrm{L}_{\mathrm{a}}=$ ambient component of light source (can be set to different value for each light source)
- Note: L_{a} is not a physically meaningful quantity

Lambert's Law

Intensity depends on angle of incoming light.

Diffuse Light Intensity Depends On Angle Of Incoming Light

- Recall
$I=$ unit vector to light
$\boldsymbol{n}=$ unit surface normal
$\theta=$ angle to normal
- $\cos \theta=\boldsymbol{I} \cdot \boldsymbol{n}$
- $\mathrm{I}_{\mathrm{d}}=\mathrm{k}_{\mathrm{d}} \mathrm{L}_{\mathrm{d}}(\boldsymbol{I} \cdot \boldsymbol{n})$
- With attenuation:

$$
I_{d}=\frac{k_{d} L_{d}}{a+b q+c q^{2}}(l \cdot n) \quad \begin{aligned}
& \mathrm{q}=\text { distance to light source }, \\
& \mathrm{L}_{\mathrm{d}}=\text { diffuse component of light }
\end{aligned}
$$

31

Specular Reflection

- Recall
$\boldsymbol{v}=$ unit vector to camera
$\boldsymbol{r}=$ unit reflected vector
$\phi=$ angle between \boldsymbol{v} and \boldsymbol{r}
- $\cos \phi=\boldsymbol{V} \cdot \boldsymbol{r}$

$$
\text { - } I_{s}=k_{s} L_{s}(\cos \phi)^{\alpha}
$$

- L_{s} is specular component of light
- α is shininess coefficient
- Can add distance term as well

Summary of Phong Model

- Light components for each color:
- Ambient (L_{a}), diffuse (L_{d}), specular (L_{s})
- Material coefficients for each color:
- Ambient (k_{a}), diffuse (k_{d}), specular (k_{s})
- Distance q for surface point from light source
$I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(l \cdot n)+k_{s} L_{s}(r \cdot v)^{\alpha}\right)+k_{a} L_{a}$
$\boldsymbol{I}=$ unit vector to light $\quad \boldsymbol{r}=\boldsymbol{I}$ reflected about \boldsymbol{n}
$\boldsymbol{n}=$ surface normal $\boldsymbol{v}=$ vector to viewer

Specular Reflection

- Specular reflection coefficient $\mathrm{k}_{\mathrm{s}} \geq 0$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Does not give the mirror effect (need other techniques)

specular reflection

specular highlights

34

BRDF

- Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Implement in a fragment shader

36

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

37

Polygonal Shading

- Curved surfaces are approximated by polygons
- How do we shade?
- Flat shading
- Interpolative shading
- Gouraud shading
- Phong shading (different from Phong illumination!)

39

Flat Shading Assessment

- Inexpensive to compute
- Appropriate for objects with flat faces
- Less pleasant for smooth surfaces

Polygonal Shading

- Now we know vertex colors
- either via OpenGL lighting,
- or by setting directly via glColor3f if lighting disabled
- How do we shade the interior of the triangle ?

Flat Shading

- Shading constant across polygon
- Core profile: Use interpolation qualifiers in the fragment shader
- Compatibility profile: Enable with glShadeModel(GL_FLAT);
- Color of last vertex determines interior color
- Only suitable for very small polygons

40

Interpolative Shading

- Interpolate color in interior
- Computed during scan conversion (rasterization)
- Core profile: enabled by default
- Compatibiltiy profile: enable with glShadeModel(GL_SMOOTH);
- Much better than flat shading
- More expensive to calculate (but not a problem)

42

Gouraud Shading

Invented by Henri Gouraud, Univ, of Utah, 1971

- Special case of interpolative shading
- How do we calculate vertex normals for a polygonal surface? Gouraud:

1. average all adjacent face normals
$n=\frac{n_{1}+n_{2}+n_{3}+n_{4}}{\left|n_{1}+n_{2}+n_{3}+n_{4}\right|}$
2. use n for Phong lighting
3. interpolate vertex colors into the interior

- Requires knowledge about which faces share a vertex

43

Phong Shading ("per-pixel lighting") Invented by Bui Tuong Phong, Univ, of Utah, 1973

- At each pixel (as opposed to at each vertex) :

1. Interpolate normals (rather than colors)
2. Apply Phong lighting to the interpolated normal

- Significantly more expensive
- Done off-line or in GPU shaders (not supported in OpenGL directly)

45

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

Data Structures for Gouraud Shading

- Sometimes vertex normals can be computed directly (e.g. height field with uniform mesh)
- More generally, need data structure for mesh
- Key: which polygons meet at each vertex

44

Phong Shading Results

Michael Gold, Nvidia

Single light Phong Lighting Gouraud Shading

Two lights Phong Lighting Phong Lighting Gouraud Shading Phong Shading

46

Phong Shader: Vertex Program

\#version 150
in vec3 position; $\}$ input vertex position and normal,
in vec3 normal; \int in world-space
out vec3 viewPosition; \(\left.\begin{array}{l}vertex position and

out vec3 viewNormal;\end{array}\right\}\)| normal, in view-space |
| :--- | | these will be |
| :--- |
| passed to |
| fragment |

program
(interpolated by
hardware)

$\left.\begin{array}{l}\text { uniform mat4 modelViewMatrix; } \\
\text { uniform mat4 normalMatrix; projectionMatrix; }\end{array}\right\}$ transformation matrices

Phong Shader: Vertex Program

```
void main()
{
// view-space position of the vertex
vec4 viewPosition4 = modelViewMatrix * vec4(position, 1.0f);
viewPosition = viewPosition4.xyz;
// final position in the normalized device coordinates space
gl_Position = projectionMatrix * viewPosition4;
// view-space normal
viewNormal = normalize((normalMatrix*vec4(normal, 0.0f)).xyz);
}
```

49

Phong Shader: Fragment Program

```
void main()
{
    // camera is at (0,0,0) after the modelview transformation
    vec3 eyedir = normalize(vec3(0, 0,0) - viewPosition);
    // reflected light direction
    vec3 reflectDir = -reflect(viewLightDirection, viewNormal);
    // Phong lighting
    float d = max(dot(viewLightDirection, viewNormal), 0.0f);
    float s = max(dot(reflectDir, eyedir), 0.0f);
    // compute the final color
    c = ka * La + d * kd * Ld + pow(s, alpha) * ks * Ls;
}

\section*{51}

\section*{Upload the light direction vector to GPU}
```

void display()
{
gIClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
openGLMatrix->SetMatrixMode(OpenGLMatrix::ModeIView);
openGLMatrix->Loadldentity();
openGLMatrix->LookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
float view[16];
openGLMatrix->GetMatrix(view);// read the view matrix

50

VBO and VAO setup

During initialization:
// Compute the unit normals (3 components per vertex). II ..
// Put the normals coordinates into a VBO.
// 3 values per vertex, namely x, y, z components of the normal. VBO * vboNormals $=$ new VBO(numVertices, 3, normals, GL_STATIC_DRAW);
// Connect the shader variable "normal" to the VBO.
vao->ConnectPipelineProgramAndVBOAndShaderVariable(pipelineProgram, vboNormals, "normal");

52

Upload the light direction vector to GPU

```
float lightDirection[3] = { 0, 1, 0 }; // the "Sun" at noon
float viewLightDirection[3]; // light direction in the view space
// the following line is pseudo-code:
viewLightDirection = (view * float4(lightDirection, 0.0)).xyz;
// upload viewLightDirection to the GPU
pipelineProgram->SetUniformVariable3fv("viewLightDirection",
        viewLightDirection);
// continue with model transformations
openGLMatrix->Translate(x, y, z);
renderBunny(); // render, via VAO
glutSwapBuffers();

// in the display function:
float n[16]; matrix->SetMatrixMode(OpenGLMatrix::ModelView); matrix->GetNormalMatrix(n); // get normal matrix
pipelineProgram->SetUniformVariableMatrix4fv(
"normalMatrix", GL_FALSE, m);

\section*{Summary}
- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model
- Polygonal Shading
- Example

56```

