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Global Illumination

• Ray tracing

• Radiosity

• Photon Mapping

• Follow light rays through a scene

• Accurate, but expensive (off-line)

Tobias R. Metoc
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Raytracing Example

Martin Moeck,
Siemens Lighting
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Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual



6

Local Illumination

• Approximate model 

• Local interaction between 
light, surface, viewer

• Phong model (this lecture): 
fast, supported in OpenGL

• GPU shaders

• Pixar Renderman (offline)

n

light source

camera
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Local Illumination

• Approximate model 

• Local interaction between 
light, surface, viewer

• Color determined only
based on surface normal, 
relative camera position 
and relative light position

• What effects does this ignore?

n
v l

camera

light source
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Normal Vectors

• Must calculate and specify the normal vector
– Even in OpenGL!

• Two examples: plane and sphere
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Normals of a Plane, Method I

• Method I: given by ax + by + cz + d = 0
• Let p0 be a known point on the plane
• Let p be an arbitrary point on the plane
• Recall: u • v = 0 if and only if u orthogonal to v
• n • (p – p0) = n • p – n • p0 = 0

• Consequently n0 = [a  b  c]T 
• Normalize to n = n0/|n0|
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Normals of a Plane, Method II

• Method II: plane given by p0, p1, p2

• Points must not be collinear
• Recall: u x v orthogonal to u and v

• n0 = (p1 – p0) x (p2 – p0)

• Order of cross product determines orientation
• Normalize to n = n0/|n0|
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Normals of Sphere

• Implicit Equation f(x, y, z) = x2 + y2 + z2 –1 = 0
• Vector form: f(p) = p • p – 1 = 0
• Normal given by gradient vector

• Normalize n0/|n0| = 2p/2 = p
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Reflected Vector

• Perfect reflection: angle of incident equals 
angle of reflection

• Also: l, n, and r lie in the same plane
• Assume |l| = |n| = 1, guarantee |r| = 1

Solution: a = -1 and
 b = 2 (l • n)

l • n = cos(q) = n • r

r = a l + b n

r = 2 (l • n) n - l
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Normals Transformed by Modelview Matrix

Undeformed

Modelview matrix M (shear in this example)
Only keep linear transform in M (discard any translation). 

Transformed
with M

(incorrect)

Transformed
with (M-1)T

(correct)



15

Normals Transformed by Modelview Matrix

Undeformed

When M is rotation, M = (M-1)T

Transformed
with M = (M-1)T

(correct)
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Normals Transformed by Modelview Matrix
(proof of (M-1)T transform)
 Point (x,y,z,w) is on a plane in 3D (homogeneous 
coordinates) if and only if
a x + b y + c z + d w = 0,  or [a b c d] [x y z w]T = 0.

Point (x,y,z,w) is on the transformed plane if and only if
M-1 [x y z w]T is on the original plane:
[a b c d] M-1 [x y z w]T = 0.
So, equation of transformed plane is
[a’ b’ c’ d’] [x y z w]T = 0, for
[a’ b’ c’ d’]T = (M-1)T [a b c d]T.

Now, let’s transform the plane by M.
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Light Sources and Material Properties

• Appearance depends on
– Light sources, their locations and properties
– Material (surface) properties:

– Viewer position
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Types of Light Sources

• Ambient light: no identifiable source or direction

• Point source: given only by point

• Distant light: given only by direction

• Spotlight: from source in direction 
– Cut-off angle defines a cone of light
– Attenuation function (brighter in center)
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Point Source

• Given by a point p0

• Light emitted equally in all directions

• Intensity decreases with square of distance
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Limitations of Point Sources

• Shading and shadows inaccurate
• Example: penumbra (partial “soft” shadow)
• Similar problems with highlights
• Compensate with attenuation

• Softens lighting
• Better with ray tracing
• Better with radiosity

q = distance |p – p0|
a, b, c constants
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Distant Light Source

• Given by a direction vector [x y z]
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Spotlight

• Light still emanates from point
• Cut-off by cone determined by angle q

q
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Global Ambient Light

• Independent of light source

• Lights entire scene

• Computationally inexpensive

• Simply add [GR GG GB] to every pixel on
every object

• Not very interesting on its own.
A cheap hack to make the scene brighter.



25

Outline

• Global and Local Illumination
• Normal Vectors
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example



26

Phong Illumination Model

• Calculate color for arbitrary point on surface
• Compromise between realism and efficiency
• Local computation (no visibility calculations)
• Basic inputs are material properties and l, n, v:

l = unit vector to light source
n = surface normal
v = unit vector to viewer
r = reflection of l at p
  (determined by l and n)
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Phong Illumination Overview

1. Start with global ambient light [GR GG GB] 
2. Add contributions from each light source
3. Clamp the final result to [0, 1]

• Calculate each color channel (R,G,B) separately
• Light source contributions decomposed into

– Ambient reflection
– Diffuse reflection
– Specular reflection

• Based on ambient, diffuse, and specular 
lighting and material properties
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Ambient Reflection

Ia = ka La

• Intensity of ambient light is uniform at every point
• Ambient reflection coefficient ka ≥ 0
• May be different for every surface and r,g,b
• Determines reflected fraction of ambient light
• La = ambient component of light source

(can be set to different value for each light source)
• Note: La is not a physically meaningful quantity
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Diffuse Reflection

• Diffuse reflector scatters light
• Assume equally all direction
• Called Lambertian surface
• Diffuse reflection coefficient kd ≥ 0
• Angle of incoming light is important
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Lambert’s Law

Intensity depends on angle of incoming light.



31

Diffuse Light Intensity Depends On 
Angle Of Incoming Light
• Recall
l =  unit vector to light
n = unit surface normal
q = angle to normal

• cos q = l • n

• Id = kd Ld (l • n) 

• With attenuation:
q = distance to light source,
Ld = diffuse component of light

n
l

q
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Specular Reflection

• Specular reflection coefficient ks ≥ 0
• Shiny surfaces have high specular coefficient
• Used to model specular highlights
• Does not give the mirror effect 

(need other techniques)

specular reflection specular highlights
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Specular Reflection

• Is = ks Ls (cos f)a

• Ls is specular component of light
• a is shininess coefficient
• Can add distance term as well

• Recall
v = unit vector to camera
r = unit reflected vector
f = angle between v and r

• cos f = v • r

n
l f

r

v
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Shininess Coefficient

• Is = ks Ls (cos f)a

• a is the shininess 
coefficient

Higher a 
gives narrower curves

f

(c
os

 f
)a

low a high a

Source: 
Univ. of Calgary

a = 1
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Summary of Phong Model

• Light components for each color:
– Ambient (La), diffuse (Ld), specular (Ls)

• Material coefficients for each color:
– Ambient (ka), diffuse (kd), specular (ks)

• Distance q for surface point from light source

l = unit vector to light
n = surface normal

r = l reflected about n
v = vector to viewer
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BRDF

• Bidirectional Reflection Distribution Function
• Must measure for
    real materials
• Isotropic vs.
   anisotropic
• Mathematically
   complex
• Implement in
   a fragment shader

Lighting properties of a human face were 
captured and face re-rendered;
Institute for Creative Technologies
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Polygonal Shading

• Now we know vertex colors
– either via OpenGL lighting, 
– or by setting directly via glColor3f if lighting disabled

• How do we shade the interior of the triangle ?

?
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Polygonal Shading

• Curved surfaces are approximated by polygons

• How do we shade?
– Flat shading
– Interpolative shading
– Gouraud shading
– Phong shading (different from Phong illumination!)
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Flat Shading
• Shading constant across polygon
• Core profile: Use interpolation qualifiers

in the fragment shader
• Compatibility profile: Enable with 

glShadeModel(GL_FLAT);
• Color of last vertex determines interior color
• Only suitable for very small polygons

v0 v1

v2
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Flat Shading Assessment

• Inexpensive to compute
• Appropriate for objects with flat faces
• Less pleasant for smooth surfaces
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Interpolative Shading
• Interpolate color in interior
• Computed during scan conversion (rasterization)
• Core profile: enabled by default
• Compatibiltiy profile: enable with 

glShadeModel(GL_SMOOTH);
• Much better than flat shading
• More expensive to calculate (but not a problem)
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Gouraud Shading
Invented by Henri Gouraud, Univ. of Utah, 1971

• Special case of interpolative shading
• How do we calculate vertex normals for a polygonal

surface? Gouraud: 
1. average all adjacent face normals

2. use n for Phong lighting
3. interpolate vertex colors 

into the interior

• Requires knowledge about 
which faces share a vertex
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Data Structures for Gouraud Shading

• Sometimes vertex normals can be computed 
directly (e.g. height field with uniform mesh)

• More generally, need data structure for mesh
• Key: which polygons meet at each vertex
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Phong Shading (“per-pixel lighting”)
Invented by Bui Tuong Phong, Univ. of Utah, 1973

• At each pixel (as opposed to at each vertex) :
1. Interpolate normals (rather than colors)
2. Apply Phong lighting to the interpolated normal

• Significantly more expensive

• Done off-line or in GPU 
shaders (not supported 
in OpenGL directly)
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Phong Shading Results

Single light
Phong Lighting

Gouraud Shading

Two lights
Phong Lighting

Gouraud Shading

Two lights
Phong Lighting
Phong Shading

Michael Gold, Nvidia



47

Outline

• Global and Local Illumination
• Normal Vectors
• Light Sources
• Phong Illumination Model
• Polygonal Shading
• Example



48

Phong Shader: Vertex Program
#version 150

in vec3 position;
in vec3 normal;

out vec3 viewPosition;
out vec3 viewNormal;

uniform mat4 modelViewMatrix;
uniform mat4 normalMatrix;
uniform mat4 projectionMatrix;

these will be
passed to 
fragment 
program
(interpolated by 
hardware)

transformation matrices

input vertex position and normal,
in world-space

vertex position and 
normal, in view-space



Phong Shader: Vertex Program

void main()
{
 // view-space position of the vertex
  vec4 viewPosition4 = modelViewMatrix * vec4(position, 1.0f);
  viewPosition = viewPosition4.xyz;

  // final position in the normalized device coordinates space
  gl_Position = projectionMatrix * viewPosition4;
  // view-space normal
  viewNormal = normalize((normalMatrix*vec4(normal, 0.0f)).xyz);
}

49
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Phong Shader: Fragment Program
in vec3 viewPosition;
in vec3 viewNormal;

out vec4 c; // output color

uniform vec4 La; // light ambient
uniform vec4 Ld; // light diffuse
uniform vec4 Ls; // light specular
uniform vec3 viewLightDirection;

uniform vec4 ka; // mesh ambient
uniform vec4 kd; // mesh diffuse
uniform vec4 ks; // mesh specular
uniform float alpha; // shininess

n
l f

r

v

q

interpolated
from vertex 
program
outputs

properties of the 
directional light

mesh optical
properties

In view space



Phong Shader: Fragment Program
void main()
{
  // camera is at (0,0,0) after the modelview transformation
  vec3 eyedir = normalize(vec3(0, 0, 0) - viewPosition);
  // reflected light direction
  vec3 reflectDir = -reflect(viewLightDirection, viewNormal); 
  // Phong lighting
  float d = max(dot(viewLightDirection, viewNormal), 0.0f);
  float s = max(dot(reflectDir, eyedir), 0.0f);
  // compute the final color
  c = ka * La + d * kd * Ld + pow(s, alpha) * ks * Ls;
}

51
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VBO and VAO setup

During initialization:
// Compute the unit normals (3 components per vertex).
// …

// Put the normals coordinates into a VBO.
// 3 values per vertex, namely x,y,z components of the normal.
VBO * vboNormals = new VBO(numVertices, 3, normals,
   GL_STATIC_DRAW);

// Connect the shader variable “normal” to the VBO.
vao->ConnectPipelineProgramAndVBOAndShaderVariable(
    pipelineProgram, vboNormals, “normal”);
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Upload the light direction vector to GPU

void display()
{
  glClear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
  openGLMatrix->SetMatrixMode(OpenGLMatrix::ModelView);
  openGLMatrix->LoadIdentity();
  openGLMatrix->LookAt(ex, ey, ez,  fx, fy, fz,  ux, uy, uz);

  float view[16];
  openGLMatrix->GetMatrix(view); // read the view matrix

 …
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Upload the light direction vector to GPU

  float lightDirection[3] = { 0, 1, 0 }; // the “Sun” at noon
  float viewLightDirection[3]; // light direction in the view space
  // the following line is pseudo-code:
  viewLightDirection = (view * float4(lightDirection, 0.0)).xyz;

  // upload viewLightDirection to the GPU
  pipelineProgram->SetUniformVariable3fv(“viewLightDirection”,
 viewLightDirection);
 
  // continue with model transformations
  openGLMatrix->Translate(x, y, z); 
  ...

  renderBunny(); // render, via VAO
  glutSwapBuffers();
}
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Upload the normal matrix to GPU

// in the display function:

float n[16]; 
    matrix->SetMatrixMode(OpenGLMatrix::ModelView);
    matrix->GetNormalMatrix(n); // get normal matrix

    pipelineProgram->SetUniformVariableMatrix4fv(
      ”normalMatrix", GL_FALSE, m);
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