CSCI 420 Computer Graphics
Lecture 12

Texture Mapping

Texture Mapping + Shading
Filtering and Mipmaps
Non-color Texture Maps
[Angel Ch. 7]

Jernej Barbic
University of Southern California

Texture Mapping

» Away of adding surface details

» Two ways can achieve the goal:
— Model the surface with more polygons |.;
» Slows down rendering speed

» Hard to model fine features

— Map a texture to the surface
» This lecture

» Image complexity does not affect
complexity of processing

« Efficiently supported in hardware

Trompe L’ Oeil (“Deceive the Eye”)

*Windows and
columns in the dome
are painted,
not a real 3D object

« Similar idea with
texture mapping:

Rather than modeling
the intricate 3D
geometry, replace it
with an image !

R\ 7 =5

Jesuit Church, Vienna, Austria

Map textures to surfaces

texture map

an image

image mapped

to a 3D polygon
The polygon can have
arbitrary size, shape a
3D position

nd

4

The texture

+ Texture is a bitmap image
— Can use an image library to load image into memory
— Or can create images yourself within the program

+ 2D array:
unsigned char texture[height][width][4]

* Or unrolled into 1D array:
unsigned char texture[4 height*width]

» Pixels of the texture are called texels

+ Texel coordinates (s,t) scaled to [0,1] range

Texture map

0,1)

3D polygon

(0,0) texture image (1,0)

(L1

Texture map

0,1

1,1)
o1 1)

(0,0)

(1,0)

= 3D polygon
(0,0) texture image (1,0)

Texture coordinates

screen image .
For each pixel,
“ lookup into the
texture image texture image to

obtain color.
8

7
The “st” coordinate system
Note: also
t called “uv”
space
S 9
9

Texture mapping: key slide

Specifying texture coordinates
in OpenGL (core profile)

* Use VBO

« Either create a separate VBO
for texture coordinates, or
put them with vertex
positions into one VBO

11

What if texture coordinates
are outside of [0,1] ?

(s,9)

Solution 1: Repeat texture

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)

14

Combining texture mapping and shading

Model + Shading
+ Textures
At what point
do things start

looking real?

Source: Jeremy Birn

16

Texture interpolation
_— 1,1)

5 x 5 texture (s,t) coordinates

typically not
directly at pixel
in the texture,
but in between

[R A W

(0,0) (0.25,0) (0.5,0) (0.75,0) (1,0) 18

Solution 2: Clamp to [0,1]

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)

use this color

S 15
15
Outline

* Introduction

« Filtering and Mipmaps

* Non-color texture maps

» Texture mapping in OpenGL
17

Texture interpolation

« (s,t) coordinates typically not directly at pixel in the texture,
but in between

« Solutions:
— Use the nearest neighbor to determine color
» Faster, but worse quality
» glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST);

— Linear interpolation
» Incorporate colors of several neighbors to determine color
» Slower, better quality

» glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_LINEAR)

18

19

Filtering

» Texture image is
shrunk in distant parts
of the image

* This leads to aliasing §

» Can be fixed with
filtering
— bilinear in space

— trilinear in space and
level of detail (mipmapping)

20

20

Mipmapping

» Each mipmap (each image below) represents
a level of depth (LOD).

+ Decrease image 2x at each level

—LOD7
x . —LOD8

22

22

Outline

* Introduction

* Filtering and Mipmaps

* Non-color texture maps

» Texture mapping in OpenGL

24

Mipmapping

* Pre-calculate how the texture should look at various
distances, then use the appropriate texture at each distance

* Reduces / fixes the aliasing problem

128 x 128

21

21

Mipmapping in OpenGL

Generate mipmaps automatically
(for the currently bound texture):

Core profile:
glGenerateMipmap(GL_TEXTURE_2D);

Compatibility profile:
gluBuild2DMipmaps(GL_TEXTURE_2D,
components, width, height, format, type, data)

Must also instruct OpenGL to use mipmaps:

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR)

23

23

Textures do not have
to represent color

Specularity (patches of shininess)

Transparency (patches of clearness)

Normal vector changes (bump maps)

Reflected light (environment maps)

Shadows

Changes in surface height (displacement maps)

25

24

25

Bump mapping

» How do you make a surface look rough?
— Option 1: model the surface with many small polygons

— Option 2: perturb the normal vectors before the shading
calculation

» Fakes small displacements above or below the true surface

» The surface doesn'’t actually change,
but shading makes it look like there are irregularities!

» A texture stores information about the “fake” height of the
surface

o RESR

Real Bump Fake Bump

26

Bump mapping

« We can perturb the normal vector without having to make any
actual change to the shape.

« This illusion can be seen through—how?

Original model Simplified Simple model with
(5M) (500) bump map

27

26

27

Bump vs Displacement Mapping

Left: bump mapping Right: displacement mapping
28

Light Mapping

* Quake uses light maps in addition to texture maps. Texture maps
are used to add detail to surfaces, and light maps are used to store
pre-computed illumination. The two are multiplied together at run-
time, and cached for efficiency.

Texture Map Only Texture + Light Map

NP4

Light Map
29

28

Example: Far Cry 4 (low mapping setting)

Note the low detail on the weapon. 30

30

29

Example: Far Cry 4 (high mapping setting)

Note the high detail on the weapon, due to specular mapping. 31

31

Example: Far Cry 4 (low mapping setting)

Example: Far Cry 4 (high mapping setting)

Note the low detail on the walls, due to low-resolution displacement mapping.

32

32

Note the high detail on the walls, due to high-resolution displacement mapping. 33

Outline

* Introduction

* Filtering and Mipmaps

* Non-color texture maps

» Texture mapping in OpenGL

34

33

OpenGL Texture Mapping (Core Profile)

* During initialization:
1. Read texture image from file into an array in memory,
or generate the image using your program

2. Initialize the texture (glTeximage2D)
3. Specify texture mapping parameters:
» Repeat/clamp, filtering, mipmapping, etc.
4. Make VBO for the texture coordinates
5. Create VAO
* Indisplay():
1. Bind VAO
2. Select the texture unit, and texture (using glBindTexture)
3. Render (e.g., glDrawArrays)

35

34

Read texture image from file
into an array in memory

» Can use our ImagelO library
« ImagelO * imagelO = new ImagelO();
if (imagelO->loadJPEG(imageFilename) != ImagelO::0K)
{
cout << “Error reading image “ << imageFilename << “.” << endl;

exit(EXIT_FAILURE);
}

 See starter code for hw2

36

35

Initializing the texture

» Do once during initialization, for each texture image in the
scene, by calling glTeximage2D

» The dimensions of texture images must be a multiple of 4
(Note: they do NOT have to be a power of 2)

» Can load textures dynamically if GPU memory is scarce:

Delete a texture (if no longer needed) using
glDeleteTextures

37

36

37

glTexlmage2D

glTeximage2D(GL_TEXTURE_2D, level, internalFormat, width, height,
border, format, type, data)

GL_TEXTURE_2D: specifies that it is a 2D texture
Level: used for specifying levels of detail for mipmapping (default: 0)
InternalFormat
— Often: GL_RGB or GL_RGBA
— Determines how the texture is stored internally
Width, Height
— The size of the texture must be a multiple of 4
Border (often set to 0)
Format, Type
— Specifies what the input data is (GL_RGB, GL_RGBA, ...)
— Specifies the input data type (GL_UNSIGNED_BYTE, GL_BYTE, ...)
— Regardless of Format and Type, OpenGL converts the data
to internalFormat
Data: pointer to the image buffer

38

Texture Initialization

Global variable:
GLUint texHandle;

During initialization:

/I create an integer handle for the texture
glGenTextures(1, &texHandle);

int code = initTexture(“sky.jpg”, texHandle);
if (code !=0)
{
printf(“Error loading the texture image.\n”);
exit(EXIT_FAILURE);
}

Function initTexture() is given in the starter code for hw2.
39

38

39

Texture Shader: Vertex Program

#version 150

in vec2 texCoord and texture coordinates

" 2 tc: output texture coordinates; they will be passed to
OULVECZ1C, ~ the fragment program (interpolated by hardware)

in vec3 position; } input vertex position

uniform mat4 modelViewMatrix; . .
transformation matrices
uniform mat4 projectionMatrix;

void main()
{
/I compute the transformed and projected vertex position (into gl_Position)
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0f);
/I pass-through the texture coordinate
tc = texCoord;

} 40

Texture Shader: Fragment Program
#version 150

in vec2 tc; // input tex coordinates (computed by the interpolator)
out vec4 c; // output color (the final fragment color)
uniform sampler2D texturelmage; // the texture image

void main()

{
/I compute the final fragment color,
/I by looking up into the texture map
¢ = texture(texturelmage, tc);

}

a1

40

Setting up the texture coordinates
During initialization:

/I Prepare the texture coordinates (the “UV’s).

float * uvs = (float*) malloc (sizeof(float) * numVertices * 2);
/I Write into uvs here:

...

/I Put the texture coordinates into a VBO.
/I 2 values per vertex, namely u and v.
VBO * vboUVs = new VBO(numVertices, 2, uvs, GL_STATIC_DRAW);

/I Connect the shader variable “texCoord” to the VBO.
vao->ConnectPipelineProgramAndVBOANndShaderVariable(

pipelineProgram, vboUVs, “texCoord”); "

42

41

Multitexturing

» The ability to use multiple textures
simultaneously in a shader
« Useful for bump mapping, displacement mapping, etc.
 The different texture units are denoted by GL_TEXTUREO,
GL_TEXTURE1, GL_TEXTURE2, etc.

* In simple applications (our homework), we only need one unit

void setTextureUnit(GLint unit)
{

glActiveTexture(unit); / select texture unit affected by subsequent texture calls
/I get a handle to the “texturelmage” shader variable

GLint h_texturelmage = glGetUniformLocation(program, “texturelmage”);

/I deem the shader variable “texturelmage” to read from texture unit “unit”
glUniform1i(h_texturelmage, unit - GL_TEXTUREOQ);

43

43

The display function

void display()
{

/I put all the usual code here (clear screen, set up camera, upload
/I the modelview matrix and projection matrix to GPU, etc.)
...

/I select the active texture unit
setTextureUnit(GL_TEXTUREDO); // it is safe to always use GL_TEXTUREO
/I select the texture to use (“texHandle” was generated by glGenTextures)
glBindTexture(GL_TEXTURE_2D, texHandle);

/I here, bind the VAO and render the object using the VAO (as usual)
...

glutSwapBuffers();
44

Summary

Introduction

Filtering and Mipmaps
Non-color texture maps
Texture mapping in OpenGL

a5

}
a4 45

