
1

Jernej Barbic
University of Southern California

CSCI 420 Computer Graphics
Lecture 12

Texture Mapping
 Texture Mapping + Shading
 Filtering and Mipmaps
 Non-color Texture Maps
 [Angel Ch. 7]

2

Texture Mapping
• A way of adding surface details

• Two ways can achieve the goal:
– Model the surface with more polygons

» Slows down rendering speed
» Hard to model fine features

– Map a texture to the surface
» This lecture
» Image complexity does not affect

complexity of processing

• Efficiently supported in hardware

3

Trompe L’Oeil (“Deceive the Eye”)

Jesuit Church, Vienna, Austria

•Windows and
columns in the dome
are painted,
not a real 3D object

•Similar idea with
texture mapping:

Rather than modeling
the intricate 3D
geometry, replace it
with an image !

4

Map textures to surfaces

The polygon can have
arbitrary size, shape and
3D position

an image
image mapped
to a 3D polygon

texture map

5

The texture
• Texture is a bitmap image

– Can use an image library to load image into memory
– Or can create images yourself within the program

• 2D array:
unsigned char texture[height][width][4]

• Or unrolled into 1D array:
unsigned char texture[4*height*width]

• Pixels of the texture are called texels

• Texel coordinates (s,t) scaled to [0,1] range

6

Texture map

(0,0)

(1,0)

(0,1)

(1,1)
(0,1)

(0,0) (1,0)

(1,1)

texture image

3D polygon

7

Texture map

(0,0)

(1,0)

(0,1)

(1,1)

(0,1)

(0,0) (1,0)

(1,1)

texture image

3D polygon

8

Texture coordinates

(s,t)

(s,t)

For each pixel,
lookup into the
texture image to

obtain color.
texture image

screen image

9

The “st” coordinate system

s

t

0
1

1

0

Note: also
called “uv”
space

(s,t)

10

Texture mapping: key slide

s

t

0
1

1

0

(0.7,0.55)

(0.1,0.7)

(0.35,0.05)

s = 0.7
t = 0.55

s = 0.35
t = 0.05

s = 0.1
t = 0.7

(2,-1,0)

(-2,1,0)

(0,1,0)

triangle
in 3D

11

• Use VBO

• Either create a separate VBO
for texture coordinates, or
put them with vertex
positions into one VBO

Specifying texture coordinates
in OpenGL (core profile)

s = 0.35
t = 0.05

s = 0.7
t = 0.55

s = 0.1
t = 0.7

13

What if texture coordinates
 are outside of [0,1] ?

(s,t)

s0 1

1

0

t

14

Solution 1: Repeat texture

(s,t)

s0 1

1

0

t

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT)

15

Solution 2: Clamp to [0,1]

(s,t)

s0 1

1

0

t

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)

use this color

16

Combining texture mapping and shading

Source: Jeremy Birn

17

Outline

• Introduction
• Filtering and Mipmaps
• Non-color texture maps
• Texture mapping in OpenGL

18

Texture interpolation

(s,t) coordinates
typically not
directly at pixel
in the texture,
but in between

(1,1)

(0.25,0) (0.5,0) (0.75,0) (1,0)(0,0)

5 x 5 texture T(s,t)

19

Texture interpolation
• (s,t) coordinates typically not directly at pixel in the texture,

but in between
• Solutions:

– Use the nearest neighbor to determine color
» Faster, but worse quality
» glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER, GL_NEAREST);

– Linear interpolation
» Incorporate colors of several neighbors to determine color
» Slower, better quality
» glTexParameteri(GL_TEXTURE_2D,

 GL_TEXTURE_MIN_FILTER, GL_LINEAR)

20

Filtering
• Texture image is

shrunk in distant parts
of the image

• This leads to aliasing

• Can be fixed with
filtering
– bilinear in space
– trilinear in space and

level of detail (mipmapping)

aliasing

21

• Pre-calculate how the texture should look at various
 distances, then use the appropriate texture at each distance
• Reduces / fixes the aliasing problem

Mipmapping

22

• Each mipmap (each image below) represents
a level of depth (LOD).

• Decrease image 2x at each level

Mipmapping

23

• Generate mipmaps automatically
(for the currently bound texture):

Core profile:
glGenerateMipmap(GL_TEXTURE_2D);

Compatibility profile:
gluBuild2DMipmaps(GL_TEXTURE_2D,
 components, width, height, format, type, data)

• Must also instruct OpenGL to use mipmaps:

glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR)

Mipmapping in OpenGL

24

Outline

• Introduction
• Filtering and Mipmaps
• Non-color texture maps
• Texture mapping in OpenGL

25

• Specularity (patches of shininess)

• Transparency (patches of clearness)

• Normal vector changes (bump maps)

• Reflected light (environment maps)

• Shadows

• Changes in surface height (displacement maps)

Textures do not have
to represent color

26

• How do you make a surface look rough?
– Option 1: model the surface with many small polygons
– Option 2: perturb the normal vectors before the shading

calculation
» Fakes small displacements above or below the true surface
» The surface doesn’t actually change,

but shading makes it look like there are irregularities!
» A texture stores information about the “fake” height of the

surface

Bump mapping

27

• We can perturb the normal vector without having to make any
actual change to the shape.

• This illusion can be seen through—how?

Bump mapping

Original model
(5M)

Simplified
(500)

Simple model with
bump map

28

Bump vs Displacement Mapping

Left: bump mapping Right: displacement mapping

29

• Quake uses light maps in addition to texture maps. Texture maps
are used to add detail to surfaces, and light maps are used to store
pre-computed illumination. The two are multiplied together at run-
time, and cached for efficiency.

Texture Map Only Texture + Light Map

Light Map

Light Mapping

30

Example: Far Cry 4 (low mapping setting)

Note the low detail on the weapon.

31

Example: Far Cry 4 (high mapping setting)

Note the high detail on the weapon, due to specular mapping.

32

Example: Far Cry 4 (low mapping setting)

Note the low detail on the walls, due to low-resolution displacement mapping.

33

Example: Far Cry 4 (high mapping setting)

Note the high detail on the walls, due to high-resolution displacement mapping.

34

Outline

• Introduction
• Filtering and Mipmaps
• Non-color texture maps
• Texture mapping in OpenGL

35

OpenGL Texture Mapping (Core Profile)

• During initialization:
1. Read texture image from file into an array in memory,

or generate the image using your program
2. Initialize the texture (glTexImage2D)
3. Specify texture mapping parameters:

» Repeat/clamp, filtering, mipmapping, etc.
4. Make VBO for the texture coordinates
5. Create VAO

• In display():
1. Bind VAO
2. Select the texture unit, and texture (using glBindTexture)
3. Render (e.g., glDrawArrays)

36

Read texture image from file
into an array in memory

• Can use our ImageIO library

• ImageIO * imageIO = new ImageIO();
if (imageIO->loadJPEG(imageFilename) != ImageIO::OK)
{
 cout << “Error reading image “ << imageFilename << “.” << endl;
 exit(EXIT_FAILURE);
}

• See starter code for hw2

37

Initializing the texture

• Do once during initialization, for each texture image in the
scene, by calling glTexImage2D

• The dimensions of texture images must be a multiple of 4
(Note: they do NOT have to be a power of 2)

• Can load textures dynamically if GPU memory is scarce:

Delete a texture (if no longer needed) using
glDeleteTextures

38

• glTexImage2D(GL_TEXTURE_2D, level, internalFormat, width, height,
 border, format, type, data)

• GL_TEXTURE_2D: specifies that it is a 2D texture
• Level: used for specifying levels of detail for mipmapping (default: 0)
• InternalFormat

– Often: GL_RGB or GL_RGBA
– Determines how the texture is stored internally

• Width, Height
– The size of the texture must be a multiple of 4

• Border (often set to 0)
• Format, Type

– Specifies what the input data is (GL_RGB, GL_RGBA, …)
– Specifies the input data type (GL_UNSIGNED_BYTE, GL_BYTE, …)
– Regardless of Format and Type, OpenGL converts the data

to internalFormat
• Data: pointer to the image buffer

glTexImage2D

39

Texture Initialization

 // create an integer handle for the texture
 glGenTextures(1, &texHandle);

 int code = initTexture(“sky.jpg”, texHandle);
 if (code != 0)
 {
 printf(“Error loading the texture image.\n”);
 exit(EXIT_FAILURE);
 }

During initialization:

Function initTexture() is given in the starter code for hw2.

Global variable:
GLUint texHandle;

40

Texture Shader: Vertex Program
#version 150

in vec3 position;
in vec2 texCoord;

out vec2 tc;

uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;

void main()
{
 // compute the transformed and projected vertex position (into gl_Position)
 gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0f);
 // pass-through the texture coordinate
 tc = texCoord;
}

input vertex position
and texture coordinates

output texture coordinates; they will be passed to
the fragment program (interpolated by hardware)

transformation matrices

41

Texture Shader: Fragment Program
#version 150

in vec2 tc; // input tex coordinates (computed by the interpolator)
out vec4 c; // output color (the final fragment color)
uniform sampler2D textureImage; // the texture image

void main()
{
 // compute the final fragment color,
 // by looking up into the texture map
 c = texture(textureImage, tc);
}

42

Setting up the texture coordinates
During initialization:

// Prepare the texture coordinates (the “UV”s).
float * uvs = (float*) malloc (sizeof(float) * numVertices * 2);
// Write into uvs here:
// …

// Put the texture coordinates into a VBO.
// 2 values per vertex, namely u and v.
VBO * vboUVs = new VBO(numVertices, 2, uvs, GL_STATIC_DRAW);

// Connect the shader variable “texCoord” to the VBO.
vao->ConnectPipelineProgramAndVBOAndShaderVariable(
 pipelineProgram, vboUVs, “texCoord”);

43

Multitexturing

void setTextureUnit(GLint unit)
{
 glActiveTexture(unit); // select texture unit affected by subsequent texture calls
 // get a handle to the “textureImage” shader variable
 GLint h_textureImage = glGetUniformLocation(program, “textureImage”);
 // deem the shader variable “textureImage” to read from texture unit “unit”
 glUniform1i(h_textureImage, unit - GL_TEXTURE0);
}

• The ability to use multiple textures
simultaneously in a shader

• Useful for bump mapping, displacement mapping, etc.
• The different texture units are denoted by GL_TEXTURE0,

GL_TEXTURE1, GL_TEXTURE2, etc.
• In simple applications (our homework), we only need one unit

44

The display function
void display()
{
 // put all the usual code here (clear screen, set up camera, upload
 // the modelview matrix and projection matrix to GPU, etc.)
 // …

 // select the active texture unit
 setTextureUnit(GL_TEXTURE0); // it is safe to always use GL_TEXTURE0
 // select the texture to use (“texHandle” was generated by glGenTextures)
 glBindTexture(GL_TEXTURE_2D, texHandle);

 // here, bind the VAO and render the object using the VAO (as usual)
 // …

 glutSwapBuffers();
}

45

Summary

• Introduction
• Filtering and Mipmaps
• Non-color texture maps
• Texture mapping in OpenGL

