
CUDA: IntroductionCUDA: Introduction
Christian Christian Trefftz Trefftz / Greg Wolffe/ Greg Wolffe
Grand Valley State UniversityGrand Valley State University

Supercomputing 2008Supercomputing 2008
Education ProgramEducation Program

(modifications by (modifications by Jernej BarbicJernej Barbic))

22

TermsTerms
 What is GPGPU?What is GPGPU?

 General-Purpose computing on a GraphicsGeneral-Purpose computing on a Graphics
Processing UnitProcessing Unit

 Using graphic hardware for non-graphicUsing graphic hardware for non-graphic
computationscomputations

 What is CUDA?What is CUDA?
 Compute Unified Device ArchitectureCompute Unified Device Architecture
 Software architecture for managing data-parallelSoftware architecture for managing data-parallel

programmingprogramming

33

MotivationMotivation

44

CPU vs. GPUCPU vs. GPU
 CPU

 Fast caches
 Branching adaptability
 High performance

 GPU
 Multiple ALUs
 Fast onboard memory
 High throughput on parallel tasks

• Executes program on each fragment/vertex

 CPUs are great for task parallelism
 GPUs are great for data parallelism

55

CPU vs. GPU - HardwareCPU vs. GPU - Hardware

 More transistors devoted to data processingMore transistors devoted to data processing

66

Traditional Graphics PipelineTraditional Graphics Pipeline

Vertex processingVertex processing

RasterizerRasterizer

Fragment processingFragment processing

Renderer (textures)Renderer (textures)

77

Pixel / Thread ProcessingPixel / Thread Processing

88

GPU ArchitectureGPU Architecture

99

Processing ElementProcessing Element

 Processing element = thread processorProcessing element = thread processor

1010

GPU Memory ArchitectureGPU Memory Architecture

 RegistersRegisters
 SharedShared MemoryMemory
 Local MemoryLocal Memory
 Global MemoryGlobal Memory

Cached:
 Constant MemoryConstant Memory
 Texture MemoryTexture Memory

Uncached:

1111

Data-parallel ProgrammingData-parallel Programming

 Think of the GPU as a massively-threadedThink of the GPU as a massively-threaded
co-processorco-processor

 Write Write ““kernelkernel”” functions that execute on functions that execute on
the device -- processing multiple datathe device -- processing multiple data
elements in parallelelements in parallel

 Keep it busy! Keep it busy! massive threading massive threading
 Keep your data close! Keep your data close! local memory local memory

1212

Hardware RequirementsHardware Requirements

 CUDA-capableCUDA-capable
video cardvideo card

 Power supplyPower supply
 CoolingCooling
 PCI-ExpressPCI-Express

1313

1414

AcknowledgementsAcknowledgements

 NVidia NVidia CorporationCorporation
developer.developer.nvidianvidia.com/CUDA.com/CUDA

 NVidiaNVidia
Technical Brief Technical Brief –– Architecture Overview Architecture Overview
CUDA Programming GuideCUDA Programming Guide

 ACM QueueACM Queue
 http://www.http://www.acmqueueacmqueue.org/.org/

1515

A Gentle Introduction toA Gentle Introduction to
CUDA ProgrammingCUDA Programming

1616

CreditsCredits

 The code used in this presentation is basedThe code used in this presentation is based
on code available in:on code available in:

 the Tutorial on CUDA in Dr. Dobbs Journalthe Tutorial on CUDA in Dr. Dobbs Journal

 Andrew Andrew BellenirBellenir’’ss code for matrix multiplication code for matrix multiplication

 Igor Igor MajdandzicMajdandzic’’ss code for Voronoi diagrams code for Voronoi diagrams

 NVIDIANVIDIA’’s CUDA programming guides CUDA programming guide

1717

Software Requirements/ToolsSoftware Requirements/Tools

 CUDA device driverCUDA device driver
 CUDA Toolkit (compiler, CUBLAS, CUFFT)CUDA Toolkit (compiler, CUBLAS, CUFFT)
 CUDA Software Development KitCUDA Software Development Kit

 EmulatorEmulator

 Occupancy calculatorOccupancy calculator
 Visual profilerVisual profiler

Profiling:

1818

To compute, we need to:To compute, we need to:

 AllocateAllocate memory for the computation memory for the computation
on the GPU (on the GPU (inclincl. variables). variables)

 Provide input dataProvide input data
 Specify the Specify the computationcomputation to be performed to be performed
 ReadRead the results from the GPU (output) the results from the GPU (output)

1919

Initially:Initially:

CPU	 Memory GPU	 Card’s	 Memory

array

2020

Allocate Memory in the GPUAllocate Memory in the GPU
cardcard

Host’s	 Memory GPU	 Card’s	 Memory

array_darray

2121

Copy content from the hostCopy content from the host’’s memory to thes memory to the
GPU card memoryGPU card memory

Host’s	 Memory GPU	 Card’s	 Memory

array_darray

2222

Execute code on the GPUExecute code on the GPU

Host’s	 Memory GPU	 Card’s	 Memory

array_darray

GPU	 MPs

2323

Copy results back to the hostCopy results back to the host
memorymemory

Host’s	 Memory GPU	 Card’s	 Memory

array_darray

2424

The KernelThe Kernel
 The code to be executed in theThe code to be executed in the

stream processors on the GPUstream processors on the GPU

 Simultaneous execution inSimultaneous execution in
several (perhaps all) streamseveral (perhaps all) stream
processors on the GPUprocessors on the GPU

 How is every instance of theHow is every instance of the
kernel going to know whichkernel going to know which
piece of data it is working on?piece of data it is working on?

2525

Grid and Block SizeGrid and Block Size

 Grid size: The number of blocksGrid size: The number of blocks
•• Can be 1 or 2-dimensional array of blocksCan be 1 or 2-dimensional array of blocks

 Each block is divided into threadsEach block is divided into threads
•• Can be 1, 2, or 3-dimensional array of threadsCan be 1, 2, or 3-dimensional array of threads

2626

LetLet’’s look at a very simple examples look at a very simple example

 The code has been divided into two files:The code has been divided into two files:
 simple.csimple.c
 simple.cusimple.cu

 simple.csimple.c is ordinary code in C is ordinary code in C
 It allocates an array of integers, initializesIt allocates an array of integers, initializes

it to values corresponding to the indices init to values corresponding to the indices in
the array and prints the array.the array and prints the array.

 It calls a function that modifies the arrayIt calls a function that modifies the array
 The array is printed again.The array is printed again.

2727

simple.csimple.c

#include <#include <stdiostdio.h>.h>
#define SIZEOFARRAY 64#define SIZEOFARRAY 64
extern void extern void fillArrayfillArray((int int *a,*a,int int size);size);

/* The main program *//* The main program */
int int main(main(int argcint argc,char *,char *argvargv[])[])
{{
/* Declare the array that will be modified by the GPU *//* Declare the array that will be modified by the GPU */
 int int a[SIZEOFARRAY];a[SIZEOFARRAY];
 int int i;i;
/* Initialize the array to 0s *//* Initialize the array to 0s */
 for(for(i=0i=0;i < SIZEOFARRAY;i++) {;i < SIZEOFARRAY;i++) {
 a[i]=0; a[i]=0;
 } }
 /* Print the initial array */ /* Print the initial array */
 printfprintf("Initial state of the array:\n");("Initial state of the array:\n");
for(i = 0;i < SIZEOFARRAY;i++) {for(i = 0;i < SIZEOFARRAY;i++) {
 printfprintf("%d ",a[i]);("%d ",a[i]);
 } }
 printfprintf(("\n""\n"););
/* Call the function that will in turn call the function in the GPU that will fill/* Call the function that will in turn call the function in the GPU that will fill
the array */the array */
 fillArrayfillArray(a,SIZEOFARRAY);(a,SIZEOFARRAY);
 /* Now print the array after calling /* Now print the array after calling fillArray fillArray */*/
 printfprintf("Final state of the array:\n");("Final state of the array:\n");
 for(i = 0;i < SIZEOFARRAY;i++) { for(i = 0;i < SIZEOFARRAY;i++) {
 printfprintf("%d ",a[i]);("%d ",a[i]);
 } }
 printfprintf(("\n""\n"););
 return 0; return 0;
}}

2828

simple.cusimple.cu

 simple.cusimple.cu contains two functions contains two functions
 fillArrayfillArray(): A function that will be executed on(): A function that will be executed on

the host and which takes care of:the host and which takes care of:
•• Allocating variables in the global GPU memoryAllocating variables in the global GPU memory
•• Copying the array from the host to the GPU memoryCopying the array from the host to the GPU memory
•• Setting the grid and block sizesSetting the grid and block sizes
•• Invoking the kernel that is executed on the GPUInvoking the kernel that is executed on the GPU
•• Copying the values back to the host memoryCopying the values back to the host memory
•• Freeing the GPU memoryFreeing the GPU memory

2929

fillArray fillArray (part 1)(part 1)
#define BLOCK_SIZE 32#define BLOCK_SIZE 32
extern "C" void extern "C" void fillArrayfillArray((int int *array, *array, int arraySizeint arraySize))
{{

int int * * array_darray_d;;
cudaError_t cudaError_t result;result;

/* /* cudaMalloc cudaMalloc allocates space in GPU memory */allocates space in GPU memory */
result =result =
cudaMalloccudaMalloc((void**)&((void**)&array_darray_d,,sizeofsizeof((intint)*)*arraySizearraySize););

/* copy the CPU array into the GPU /* copy the CPU array into the GPU array_d array_d */*/
result = result = cudaMemcpycudaMemcpy((array_darray_d,array,,array,sizeofsizeof((intint)*)*arraySizearraySize,,

 cudaMemcpyHostToDevicecudaMemcpyHostToDevice););

3030

fillArray fillArray (part 2)(part 2)
/* Indicate block size *//* Indicate block size */
dim3 dim3 dimblockdimblock(BLOCK_SIZE);(BLOCK_SIZE);
/* Indicate grid size *//* Indicate grid size */
dim3 dim3 dimgriddimgrid((arraySize arraySize / BLOCK_SIZE);/ BLOCK_SIZE);

/* Call the kernel *//* Call the kernel */
cu_fillArraycu_fillArray<<<<<<dimgriddimgrid,,dimblockdimblock>>>(>>>(array_darray_d););

/* Copy the results from GPU back to CPU memory *//* Copy the results from GPU back to CPU memory */
result =result =
cudaMemcpycudaMemcpy(array,(array,array_darray_d,,sizeofsizeof((intint)*)*arraySizearraySize,,cudaMemcpyDevicecudaMemcpyDevice
ToHostToHost););

/* Release the GPU memory *//* Release the GPU memory */
cudaFreecudaFree((array_darray_d););

}}

3131

simple.cu (cont.)simple.cu (cont.)

 The other function in simple.cu is The other function in simple.cu is cu_fillArraycu_fillArray():():

 This is the GPU kernelThis is the GPU kernel

 Identified by the keyword: __global__Identified by the keyword: __global__

 Built-in variables:Built-in variables:
•• blockIdxblockIdx.x.x : block index within the grid: block index within the grid
•• threadIdxthreadIdx.x: thread index within the block.x: thread index within the block

3232

cu_fillArraycu_fillArray
__global__ void __global__ void cu_fillArraycu_fillArray((int int * * array_darray_d))
{{

int int x;x;
x = x = blockIdxblockIdx.x * BLOCK_SIZE + .x * BLOCK_SIZE + threadIdxthreadIdx.x;.x;
array_darray_d[x] = x;[x] = x;

}}

__global__ void __global__ void cu_addIntegerscu_addIntegers((int int * array_d1, * array_d1, int int * array_d2)* array_d2)
{{

int int x;x;
x = x = blockIdxblockIdx.x * BLOCK_SIZE + .x * BLOCK_SIZE + threadIdxthreadIdx.x;.x;
array_d1[x] += array_d2[x];array_d1[x] += array_d2[x];

}}

3333

To compile:To compile:

 nvccnvcc simple.csimple.c simple.cusimple.cu ––o simpleo simple
 The compiler generates the code for bothThe compiler generates the code for both

the host and the GPUthe host and the GPU
 Demo on Demo on cuda.littlefe.netcuda.littlefe.net ……

3434

What are those What are those blockIdsblockIds and and
threadIdsthreadIds??

 With a minor modification to the code, weWith a minor modification to the code, we
can print the can print the blockIdsblockIds and and threadIdsthreadIds

 We will use two arrays instead of just one.We will use two arrays instead of just one.
 One for the One for the blockIdsblockIds
 One for the One for the threadIdsthreadIds

 The code in the kernel:The code in the kernel:
 x= x=blockIdx.xblockIdx.x**BLOCK_SIZE+threadIdx.xBLOCK_SIZE+threadIdx.x;;

block_d[xblock_d[x] =] = blockIdx.xblockIdx.x;;
thread_d[xthread_d[x] =] = threadIdx.xthreadIdx.x;;

3535

In the GPU:In the GPU:

ProcessingProcessing ElementsElements

Array ElementsArray Elements

Thread
1

Thread
2

Thread
3

Thread
0

Thread
1

Thread
2

Thread
3

Thread
0

Block	 0 Block	 1

3636

Hands-on ActivityHands-on Activity
 Compile with (one single line)Compile with (one single line)

nvccnvcc blockAndThread.cblockAndThread.c blockAndThread.cublockAndThread.cu

-o -o blockAndThreadblockAndThread

 Run the programRun the program
././blockAndThreadblockAndThread

 Edit the file Edit the file blockAndThread.cublockAndThread.cu
 Modify the constant BLOCK_SIZE. The current value isModify the constant BLOCK_SIZE. The current value is

8, try replacing it with 4.8, try replacing it with 4.
 Recompile as aboveRecompile as above
 Run the program and compare the output with theRun the program and compare the output with the

previous run.previous run.

3737

This can be extended to 2 dimensionsThis can be extended to 2 dimensions

 See files:See files:
 blockAndThread2D.cblockAndThread2D.c
 blockAndThread2D.cublockAndThread2D.cu

 The gist in the kernelThe gist in the kernel
x = x = blockIdx.xblockIdx.x**BLOCK_SIZE+threadIdx.xBLOCK_SIZE+threadIdx.x;;

y = y = blockIdx.yblockIdx.y**BLOCK_SIZE+threadIdx.yBLOCK_SIZE+threadIdx.y;;

pos = x*pos = x*sizeOfArray+ysizeOfArray+y;;

block_dX[posblock_dX[pos] =] = blockIdx.xblockIdx.x;;

 Compile and run blockAndThread2DCompile and run blockAndThread2D
 nvccnvcc blockAndThread2D.c blockAndThread2D.cu blockAndThread2D.c blockAndThread2D.cu
 -o blockAndThread2D -o blockAndThread2D
 ./blockAndThread2D./blockAndThread2D

3838

When the kernel is called:When the kernel is called:
dim3 dim3 dimblockdimblock(BLOCK_SIZE,BLOCK_SIZE);(BLOCK_SIZE,BLOCK_SIZE);

nBlocks nBlocks = = arraySize/BLOCK_SIZEarraySize/BLOCK_SIZE;;

dim3 dim3 dimgriddimgrid((nBlocksnBlocks,,nBlocksnBlocks););

cu_fillArraycu_fillArray<<<<<<dimgriddimgrid,,dimblockdimblock>>>>>>

((…… paramsparams……););

3939

Another Example: Another Example: saxpysaxpy

 SAXPY (Scalar Alpha X Plus Y)SAXPY (Scalar Alpha X Plus Y)
 A common operation in linear algebraA common operation in linear algebra

 CUDA: loop iteration CUDA: loop iteration thread thread

4040

Traditional Sequential CodeTraditional Sequential Code

void void saxpy_serial(intsaxpy_serial(int n, n,

float alpha,float alpha,

float *x,float *x,

 float *y)float *y)

{{

for(intfor(int i = 0;i < i = 0;i < n;in;i++)++)

y[iy[i] = alpha*] = alpha*x[ix[i] +] + y[iy[i];];

}}

4141

CUDA CodeCUDA Code
__global__ void __global__ void saxpy_parallel(intsaxpy_parallel(int n, n,

float alpha,float alpha,

float *x,float *x,

float *y) {float *y) {

intint i = i = blockIdx.xblockIdx.x**blockDim.x+threadIdx.xblockDim.x+threadIdx.x;;

if (i<n)if (i<n)

y[iy[i] = alpha*] = alpha*x[ix[i] +] + y[iy[i];];

}}

4242

““WarpsWarps””
 Each block is split into SIMD groups of threadsEach block is split into SIMD groups of threads

called "warps".called "warps".

 Each warp contains the same number of threads,Each warp contains the same number of threads,
called the "warp sizecalled the "warp size””

4343

Block 1

w
ar

p
1

w
ar

p
2

w
ar

p
3

threads

Block 2

w
ar

p
1

w
ar

p
2

w
ar

p
3

Block 3

w
ar

p
1

w
ar

p
2

w
ar

p
3

Block 3

w
ar

p
1

w
ar

p
2

w
ar

p
3

Multi-processor 1

4444

Keeping multiprocessors in mindKeeping multiprocessors in mind……

 Each multiprocessor can process multiple blocks at aEach multiprocessor can process multiple blocks at a
time.time.

 How many depends on the number of registers perHow many depends on the number of registers per
thread and how much shared memory per block isthread and how much shared memory per block is
required by a given kernel.required by a given kernel.

 If a block is too large, it will not fit into the resources ofIf a block is too large, it will not fit into the resources of
an MP.an MP.

4545

Performance Tip: Block SizePerformance Tip: Block Size

 Critical for performanceCritical for performance
 Recommended value is 192 or 256Recommended value is 192 or 256
 Maximum value is 512Maximum value is 512
 Should be a multiple of 32 since this is the warpShould be a multiple of 32 since this is the warp

size for Series 8 GPUs and thus the nativesize for Series 8 GPUs and thus the native
execution size for multiprocessorsexecution size for multiprocessors

 Limited by number of registers on the MPLimited by number of registers on the MP
 Series 8 GPU MPs have 8192 registers whichSeries 8 GPU MPs have 8192 registers which

are shared between all the threads on an MPare shared between all the threads on an MP

4646

Performance Tip: Grid SizePerformance Tip: Grid Size
 Recommended value is at least 100, but 1000 wouldRecommended value is at least 100, but 1000 would

scale for many generations of hardwarescale for many generations of hardware

 Actual value depends on problem sizeActual value depends on problem size

 It should be a multiple of the number of MPs for an evenIt should be a multiple of the number of MPs for an even
distribution of work (not a requirement though)distribution of work (not a requirement though)

 Example: 24 blocksExample: 24 blocks
 Grid will work efficiently on Series 8 (12 MPs), but it will wasteGrid will work efficiently on Series 8 (12 MPs), but it will waste

resources on new GPUs with 32MPsresources on new GPUs with 32MPs

4747

Memory AlignmentMemory Alignment

 Memory access faster if data aligned at 64Memory access faster if data aligned at 64
byte boundariesbyte boundaries

 Hence, allocate 2D arrays so that everyHence, allocate 2D arrays so that every
row starts at a 64-byte boundaryrow starts at a 64-byte boundary

 Tedious Tedious for a programmerfor a programmer

4848

Allocating 2D arrays with Allocating 2D arrays with ““pitchpitch””

 CUDA offers special versions of:CUDA offers special versions of:

 Memory allocation of 2D arrays so that every rowMemory allocation of 2D arrays so that every row
is padded (if necessary): is padded (if necessary): cudaMallocPitchcudaMallocPitch()()

 Memory copy operations that take into account theMemory copy operations that take into account the
pitch: cudaMemcpy2D()pitch: cudaMemcpy2D()

4949

 Pitch Pitch

Rows

Columns

Pitch

Padding

5050

A simple example:A simple example:

 See pitch.cuSee pitch.cu
 A matrix of 30 rows and 10 columnsA matrix of 30 rows and 10 columns
 The work is divided into 3 blocks of 10The work is divided into 3 blocks of 10

rows:rows:
 Block size is 10Block size is 10
 Grid size is 3Grid size is 3

5151

Key portions of the code (1)Key portions of the code (1)

result = result = cudaMallocPitchcudaMallocPitch((

(void **)&(void **)&devPtrdevPtr,,

&pitch,&pitch,

width*width*sizeofsizeof((intint),),

height);height);

5252

Key portions of the code (2)Key portions of the code (2)
result = cudaMemcpy2D(result = cudaMemcpy2D(

devPtrdevPtr,,

pitch,pitch,

mat,mat,

width*width*sizeofsizeof((intint),),

width*width*sizeofsizeof((intint),),

height,height,

cudaMemcpyHostToDevicecudaMemcpyHostToDevice););

5353

In the kernel:In the kernel:
__global__ void __global__ void myKernelmyKernel((int int **devPtrdevPtr,,

 int int pitch,pitch,

 int int width,width,

 int int height)height)

{{

int int c;c;

int thisRowint thisRow;;

thisRow thisRow = = blockIdxblockIdx.x * 10 + .x * 10 + threadIdxthreadIdx.x;.x;

int int *row = (*row = (int int *)((char *)*)((char *)devPtr devPtr + +
thisRowthisRow*pitch);*pitch);

for(c = 0;c < width;c++)for(c = 0;c < width;c++)

row[c] = row[c] + 1;row[c] = row[c] + 1;

}}

\

5454

The call to the kernelThe call to the kernel

myKernelmyKernel<<<3,10>>>(<<<3,10>>>(

devPtrdevPtr,,

pitch,pitch,

width,width,

height);height);

5555

pitch pitch Divide work by rows Divide work by rows

 Notice that when using pitch, we divide theNotice that when using pitch, we divide the
work by rows.work by rows.

 Instead of using the 2D decomposition ofInstead of using the 2D decomposition of
2D blocks, we are dividing the 2D matrix2D blocks, we are dividing the 2D matrix
into blocks of rows.into blocks of rows.

5656

 Dividing the work by blocks: Dividing the work by blocks:

Rows

Columns

Pitch

Block	 0

Block	 1

Block	 2

5757

An application that uses pitch:An application that uses pitch:
MandelbrotMandelbrot

 The Mandelbrot set: A set ofThe Mandelbrot set: A set of
points in the complex plane,points in the complex plane,
the boundary of which forms athe boundary of which forms a
fractal.fractal.

 A complex number, A complex number, cc, is in the, is in the
Mandelbrot set if, whenMandelbrot set if, when
starting with starting with xx00=0 and applying=0 and applying
the iterationthe iteration

 xxnn+1+1 = = xxnn
22 + + cc

repeatedly, the absolute valuerepeatedly, the absolute value
of of xxnn never exceeds a certainnever exceeds a certain
number (that number dependsnumber (that number depends
on on cc) however large) however large nn gets. gets.

5858

Performance Tip: Code DivergencePerformance Tip: Code Divergence

 Control flow instructions diverge (threads takeControl flow instructions diverge (threads take
different paths of execution)different paths of execution)

 Example: if, for, whileExample: if, for, while
 Diverged code prevents SIMD execution Diverged code prevents SIMD execution –– it it

forces serial execution (kills efficiency)forces serial execution (kills efficiency)
 One approach is to invoke a simpler kernelOne approach is to invoke a simpler kernel

multiple timesmultiple times
 Liberal use of Liberal use of __syncthreads__syncthreads()()

5959

Performance Tip: Memory LatencyPerformance Tip: Memory Latency

 4 clock cycles for each memory read/write plus4 clock cycles for each memory read/write plus
additional 400-600 cycles for latencyadditional 400-600 cycles for latency

 Memory latency can be hidden by keeping a largeMemory latency can be hidden by keeping a large
number of threads busynumber of threads busy

 Keep number of threads per block (block size) andKeep number of threads per block (block size) and
number of blocks per grid (grid size) as large as possiblenumber of blocks per grid (grid size) as large as possible

 Constant memory can be used for constant dataConstant memory can be used for constant data
(variables that do not change).(variables that do not change).

 Constant memory is cached.Constant memory is cached.

6060

Performance Tip: Memory ReadsPerformance Tip: Memory Reads

 Device is capable of reading a 32, 64 or 128-bitDevice is capable of reading a 32, 64 or 128-bit
number from memory with a single instructionnumber from memory with a single instruction

 Data has to be aligned in memory (this can beData has to be aligned in memory (this can be
accomplished by using accomplished by using cudaMallocPitchcudaMallocPitch() calls)() calls)

 If formatted properly, multiple threads from aIf formatted properly, multiple threads from a
warp can each receive a piece of memory with awarp can each receive a piece of memory with a
single read instructionsingle read instruction

6161

Watchdog timerWatchdog timer
 OS may force programs using the GPU to time out ifOS may force programs using the GPU to time out if

running too longrunning too long

 Exceeding the limit can cause CUDA programExceeding the limit can cause CUDA program
failure.failure.

 Possible solution: run CUDA on a GPU that is NOTPossible solution: run CUDA on a GPU that is NOT
attached to a display.attached to a display.

6262

Resources on lineResources on line
 http://http://www.acmqueue.org/modules.php?namewww.acmqueue.org/modules.php?name==

Content&paContent&pa==showpage&pidshowpage&pid=532=532
 http://www.ddj.com/hpc-high-performance-http://www.ddj.com/hpc-high-performance-

computing/207200659computing/207200659
 http://http://www.nvidia.com/object/cuda_home.htmlwww.nvidia.com/object/cuda_home.html##
 http://http://www.nvidia.com/object/cuda_learn.htmlwww.nvidia.com/object/cuda_learn.html
 ““Computation of Voronoi diagrams using aComputation of Voronoi diagrams using a

graphics processing unitgraphics processing unit”” by Igor by Igor MajdandzicMajdandzic et et
al. available through IEEE Digital Library, DOI:al. available through IEEE Digital Library, DOI:
10.1109/EIT.2008.455434210.1109/EIT.2008.4554342

6363

A Real ApplicationA Real Application
 The Voronoi Diagram:The Voronoi Diagram:

A fundamental dataA fundamental data
structure instructure in
ComputationalComputational
GeometryGeometry

6464

DefinitionDefinition

 Definition : Let S be a set of n sites inDefinition : Let S be a set of n sites in
Euclidean space of dimension d. For eachEuclidean space of dimension d. For each
site p of S, the Voronoi cell site p of S, the Voronoi cell V(pV(p) of p is the) of p is the
set of points that are closer to p than toset of points that are closer to p than to
other sites of S. The Voronoi diagram V(S)other sites of S. The Voronoi diagram V(S)
is the space partition induced by Voronoiis the space partition induced by Voronoi
cells.cells.

6565

AlgorithmsAlgorithms

 The classical sequential algorithm hasThe classical sequential algorithm has
complexity O(n log n) where n is the numbercomplexity O(n log n) where n is the number
of sites (seeds).of sites (seeds).

 If one only needs an approximation, on a gridIf one only needs an approximation, on a grid
of points (e.g. digital display):of points (e.g. digital display):
 Assign a different color to each seedAssign a different color to each seed
 Calculate the distance from every point in the gridCalculate the distance from every point in the grid

to all seedsto all seeds
 Color each point with the color of its closest seedColor each point with the color of its closest seed

6666

Lends itself to implementation on aLends itself to implementation on a
GPUGPU……

 The calculation for every pixel is a goodThe calculation for every pixel is a good
candidate to be carried out in parallelcandidate to be carried out in parallel……

 Notice that the locations of the seeds areNotice that the locations of the seeds are
read-only in the kernelread-only in the kernel

 Thus we can use the texture map area inThus we can use the texture map area in
the GPU card, which is a fast read-onlythe GPU card, which is a fast read-only
cache to store the seeds:cache to store the seeds:

__device__ __constant__ __device__ __constant__ ……

