CUDA: Introduction

Christian Treffi

z | Greg Wolffe

Grand Valley State University

Supercomputing 2008
Education Program

(modifications by Jernej Barbic)

Terms
> What is GPGPU?

o General-Purpose computing on a Graphics
Processing Unit

o Using graphic hardware for non-graphic
computations

> What is CUDA?

» Compute Unified Device Architecture

o Software architecture for managing data-parallel
programming

Motivation

GFLOPS

G80 = GeForce 8800 GTX
300 G71 = GeForce 7300 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ulbra

200

NV35 = GeForce FX 5950 Ulbra

NV30 = GaForce FX 5800

100 3.0 GHz

Nv3s NV4 Intel Corg2 Duo

5 Nv3g— B e
Jan Jun Apr May Nov Mar Nov
2003 2004 2005 2006

CPUvs. GPU

> CPU

o Fast caches
o Branching adaptability
o High performance

> GPU
o Multiple ALUs
o Fast onboard memory

o High throughput on parallel tasks
Executes program on each fragment/vertex

> CPUs are great for task parallelism
> GPUs are great for data parallelism

CPU vs. GPU - Hardware

> More transistors devoted to data processing

Traditional Graphics Pipeline

\ertex processing
g
Rasterizer
g
Fragment processing
g
Renderer (textures)

Pixel / Thread Processing

O

Input Registers

Fragment Program

Thread Number

Texture

Constants

Registers

Output Registers

O

Thread Program

Parallel Data Cache

Texture

Constants

|

Registers

Global Memory

GPU Architecture

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
T| 'n % ‘ y \ '4.1 | ’A ' y' &

Load/store

Global Memory

Processing Element

Thread Processors

> Processing element = thread processor

GPU Memory Architecture

Uncached:

> Registers

> Shared Memory
> Local Memory
> Global Memory

Cached:

> Constant Memory e— — —— S—
> Texture Memory e e —— —

Data-parallell Programming

> I'hink of the GPU as a massively-threaded
CO-Processor

> Write “kernel” functions that execute on
the device -- processing multiple data
elements in parallel

> Keep it busy! = massive threading
> Keep your data close! = local memory.

Hardware Requirements

> CUDA-capable
video card

> Power supply
> Cooling
> PCIl-Express

Acknowledgements

> NVidia Corporation
developer.nvidia.com/CUDA

> NVidia
Technical Brief — Architecture Overview
CUDA Programming Guide

> ACM Queue
o hitp://www.acmgueue.org/

A Gentle Introduction to
CUDA Programming

Credits

> I'he code used In this presentation is based
on code available In:

o the Tutorial on CUDA in Dr. Dobbs Journal
o Andrew Bellenir's code for matrix multiplication

» Igor Majdandzic’s code for VVoronol diagrams
o NVIDIA’s CUDA programming guide

Software Requirements/Tools

> CUDA device driver
> CUDA Toolkit (compiler, CUBLAS, CUFET)

> CUDA Software Development Kit
o Emulator

Profiling:
> Occupancy calculator
> Visual profiler

o compute, we need to:

> Allocate memory for the computation
on the GPU (incl. variables)

> Provide input data
> Specify the computation to be performed
> Read the results from the GPU (output)

Initially:

CPU Memory GPU Card’s Memory

Allocate Memory in the GPU
card

Host’s Memory GPU Card’s Memory

Copy content from the host’'s memory to the
GPU card memory

Host’s Memory GPU Card’s Memory

Execute code on the GPU

Host’s Memory GPU Card’s Memory

Copy results back to the host
memory.

Host’s Memory GPU Card’s Memory

The Kernel

> The code to be executed in the
stream processors on the GPU

Simultaneous execution in
several (perhaps all) stream
processors on the GPU

How is every instance of the
kernel going to know which
piece of data it is working on?

Grid and Block Size

o Grid size: The number of blocks
Can be 1 or 2-dimensional array of blocks

o Each block is divided into threads
Can be 1, 2, or 3-dimensional array of threads

Let’s look at a very simple example

> Ihe code has been divided into two files:
o SImple.c
o Simple.cu

> simple.c Is ordinary code in C

> It allocates an array of integers, initializes
it to values corresponding to the indices In
the array and prints the array.

> It calls a function that modifies the array
> I'he array Is printed again.

simple.c

#include <stdio.h>
#define SIZEOFARRAY 64
extern void fillArray (int *a,int size) ;

/* The main program */
int main (int argec,char *argwvl|])
{
/* Declare the array that will be modified by the GPU */
int a[SIZEOFARRAY] ;
int 1;
/* Initialize the array to 0s */
for (1=0;1 < SIZEOFARRAY;it+) {
ali]=0;
I
/* Print the initial array */
printf ("Initial state of the array:\n");
for(i = 0;1 < SIZEOFARRAY;i+f+) {
printf ("sd ",alil);
I
printf ("\n") ;
/* Call the function that will im turn call the function in the GPU that will fill
the array */
fillArray (a, STZEOFARRAY) ;
/* Now print the array after calling fillArray */
printf ("Final state of the array:\n") ;
for (i = 0;1 < SIZEOFARRAY;i+f+) {
printf ("sd ", alil);
I
printf ("\n") ;
return 0;

simple.cu

> simple.cu contains two functions

o fillArray(): A function that will be executed on
the host and which takes care of:

Allocating variables in the global GPU memory
Copying the array from the host to the GPU memory
Setting the grid and block sizes
Invoking the kernel that is executed on the GPU
Copying the values back to the host memory.
Freeing the GPU memory

fillArray (part 1)

#define BLOCK SIZE 32
extern "C" void fillArray(int *array, 1nt arraysSize)

{

int * array d;
cudakrror t result;

/* cudaMalloc allocates space in GPU memory */

result =
cudaMalloc ((void**) &array d,sizeof (1nt) *arraySize) ;

/* copy the CPU array into the GPU array d */
result = cudaMemecpy (array d,array,sizeof (1nt)*arraySize,
cudaMemcpyHostTobDevice) ;

fillArray (part 2)

/* Indicate block size */

dim3 dimblock (BLOCK SIZE) ;

/* Indicate grid size */

dim3 dimgrid(arraySize / BLOCK SIZE) ;

/* Call the kernel */
cu fillArray<<<dimgrid,dimblock>>> (array d) ;

/* Copy the results from GPU back to CPU memory */

result =
cudaMemcpy (array,array d,sizeof (int) *arraySize, cudaMemcpyDevice
ToHost) ;

/* Release the GPU memory */
cudafree (array d);

simple.cu (cont.)

> I'he other function in simple.cu is cu_TillArray():
o [his is the GPU kernel
o |ldentified by the keyword: global

o Built-in variables:
blockldx.x : block index within the grid
threadldx.x: thread index within the block

cu_fillArray

__global wvoid cu fillArray(int * array d)
{

int x;
= blockIdx.x * BLOCK SIZE + threadIdx.x;

array d[x] = x;

__global wvoid cu addIntegers (int * array dl, int * array d2)

{
int x;
x = blockIdx.x * BLOCK SIZE + threadIdx.x;

array dl[x] += array d2[x];

To compille:

> hvee simple.c simple.cu —o simple

> I'he compliler generates the code for both
the host and the GPU

> Demo on cuda.littlefe.net ...

What are those blocklds and
threadlds?

> With a minor modification to the code, we
can print the blocklds and threadlds

> We will use two arrays instead of just one.

o One for the blocklds
o One for the threadlds

> IThe code In the kernel:

x=blockIdx.x*BLOCK SIZE+threadldx.x;
block d[x] = blockldx.x;
thread d[x] = threadldx.x;

In the GPU:

Processing Elements

Thread | Thread | Thread | Thread | Thread | Thread | Thread | Thread
0 1 2 3 0 1 2 3

Array Elements

Block O Block 1

Hands-on Activity

Compile with (one single line)

nvce blockAndThread.c blockAndThread. cu
-0 blockAndThread

Run the program

. /blockAndThread

Edit the file blockAndThread.cu

Modify the constant BLOCK_ _SIZE. The current value is
8, try replacing it with 4.

Recompile as above

Run the program and compare the output with the
previous, run.

This can be extended to 2 dimensions

> See files:
o« blockAndThread2D.c
o« blockAndThread2D.cu

> The gistin the kernel
= blockIdx.x*BLOCK SIzE+threadldx.x;
y = blockIdx.y*BLOCK SIZE+threadldx.y;
pos = x*s1zeOfArray+y;
block dX[pos] = blockldx.x;

> Compile and run blockAndTThread2D
o nvcce blockAndThread2D.c blockAndThread2D.cu
-0 blockAnd Thread2D
o ./blockAndThread2D

When the kernel Is called:

dim3 dimblock (BLOCK SIZE,BLOCK SIZE) ;
nBlocks = arraySize/BLOCK SIZE;
dim3 dimgrid (nBlocks,nBlocks) ;

cu fillArray<<<dimgrid,dimblock>>>

(... params...) ;

Another Example: saxpy

> SAXPY (Scalar Alpha X Plus Y)

o A common operation In linear algebra
> CUDA: loop iteration = thread

Traditional Sequential Code

vold saxpy serial (1nt n,
rloat alpha,
rloat *x,

rloat *v)

for(int 1 = 0;1i < n;i++)

yl1] = alpha*x[1] + y[1];

CUDA Code

__global wvoid saxpy parallel (int n,
rloat alpha,
float *x,
rloat *vy) {
int 1 = blockldx.x*blockDim.x+tthreadldx.x;
1f (1<n)

v[i] = alpha*x[1] + y[i1];

“Wa rpS”

> Each block is split into SIMD' groups of threads
called "warps”.

> Each warp contains the same number of threads,
called the "warp size”

threads

/A Block 2
1

v

Multi-processor 1

Keeping multiprocessors in mind...

> Each multiprocessor can process multiple blocks at a
time.

> How many depends on the number of registers per
thread and how much shared memory per block is
required by a given kernel.

> It a block is too large, it will not fit into the resources of
an MP.

Performance Tip: Block Size

> Critical for performance
> Recommended value is 192 or 256
> Maximum value is 512

> Should be a multiple of 32 since this is the warp
size for Series 8 GPUs and thus the native
execution size for multiprocessors

> Limited by number of registers on the MP

> Series 8 GPU MPs have 8192 registers which
are shared between all the threads on an MP

Performance Tip: Grid Size

> Recommended value Is at least 100, but 1000 would
scale for many generations of hardware

> Actual value depends on problem size

> It should be a multiple of the number of MPs for an even
distribution of work (not a requirement though)

> Example: 24 blocks

o Grid will' work efficiently on Series & (12 MPs), but it willlwaste
resources on new GPUs with 32MPs

Memory Alignment

> Memory access faster If data aligned at 64
byte boundaries

> Hence, allocate 2D arrays so that every
row starts at a 64-byte boundary

> l'edious for a programmer

Allocating 2D’ arrays with “pitch”

» CUDA offers special versions of:

« Memory allocation of 2D arrays so that every row
IS padded (it necessary): cudaMallocPitch()

o Memory copy operations that take into account the
pitch: cudalMlemcpy2D()

Pitch

Columns

A simple example:

> See pitch.cu
> A matrix of 30 rows and 10 columns

> I'he work Is divided into 3 blocks of 10
[OWS:
o Block size is 10
o Grid size Is 3

Key portions of the code (1)

result = cudaMallocPitch (
(void **) &devPtr,
&pitch,
width*sizeof (1nt),

height) ;

Key portions of the code (2)

result = cudaMemcpy2D
devPtr,
pitch,
mat,
width*sizeof (1nt),
width*sizeof (1nt),
height,

cudaMemepyHostTobevice) ;

In the kernel:

__global void myKernel (int *devPtr,
int pitch,
int width,
int height)

int c;
int thisRow;
thisRow = blockldx.x * 10 + threadldx.x;

int *row = (int *) ((char *)devPtr +
thisRow*pitch) ;

for(c = 0;c < width;ct+)

row|c] = row|c] + 1;

The call to the kernel

myKernel<<<3, 10>>> (
devPtr,
pitch,
width,
height) ;

piich = Divide work by rows

> Notice that when using pitch, we divide the
WOork by rows.

> Instead of using the 2D decomposition of
2D blocks, we are dividing the 2D matrix
Into blocks of rows.

Dividing the work by blocks:

=

Columns

-
.

o6

An application that uses pitch:
Mandelbrot

> The Mandelbrot set: A set of
points in the complex plane,
the boundary of which forms a
fractal.

> A complex number, c, is in the
Mandelbrot set if, when

starting with x,=0 and applying
the iteration

Xn

repeatedly, the absolute value
of X, never exceeds a certain
number (that number depends
on c¢) however large n gets.

=y 2
M= X" FC

Performance Tip: Code Divergence

> Control flow Instructions diverge (threads take
different paths of execution)

> Example: if, for, while

> Diverged code prevents SIMD execution — it
forces serial execution (kills efficiency)

> One approach is to invoke a simpler kernel
multiple times

> Liberal use of __ syncthreads()

Performance Tip: Memory Latency

4 clock cycles for each memory read/write plus
additional 400-600 cycles for latency

Memory latency can be hidden by keeping a large
number of threads busy

Keep number of threads per block (block size) and
number of blocks per grid (grid size) as large as possible

Constant memory can be used for constant data
(variables that do not change).

Constant memory is cached.

Performance Tip: Memory Reads

> Device is capable of reading a 32, 64 or 128-bit
number from memory with a single instruction

> Data has to be aligned in memory (this can be
accomplished by using cudaMallocPitch() calls)

> If formatted properly, multiple threads from a
warp can each receive a piece of memory with a
single read instruction

VWatchdog timer

> OS may force programs using the GPU to time out if
running too long

> Exceeding the limit can cause CUDA program
failure.

> Possible solution: runi CUDA on a GPU that is NOT
attached to a display.

Resources on line

> http://www.acmgueue.org/modules.php?name=
Content&pa=showpage&pid=532

> http://www.dd].com/hpe-high-performance-
computing/207200659

> http://www.nvidia.com/object/cuda_home.html#

> http://www.nvidia.com/object/cuda_learn.him]

> ‘Computation of Voronoi diagrams using a
graphics processing unit” by lgor Majdandzic et
al. available through IEEE Digital Library, DOI:
10.1109/EIT.2008.4554 342

A Real Application

> The Voronol Diagram:
A fundamental data
structure in
Computational
Geometry

Definition

> Definition : Let S be a set of n sites in
Euclidean space of dimension d. For each
site p of S, the Voronoi cell V(p) of p Is the
set of points that are closer to p than to
other sites of S. The VVoronol diagram V(S)
IS the space partition induced by Voronol
cells.

Algorithms

> Ihe classical sequential algorithm has
complexity O(n log n) where n is the number
of sites (seeds).

> |If one only needs an approximation, on a grid
of points (e.g. digital display):
« Assign a different color to each seed

» Calculate the distance from every point in the grid
to all'seeds

» Color each point withithe color of Its closest seed

65

Lends itself to implementation on a
GPU...

> I'he calculation for every pixel is a good
candidate to be carried out in parallel...

> Notice that the locations of the seeds are

read-only in the kernel

> I'hus we can use the texture map area in
the GPU card, which is a fast read-only
cache to store the seeds:

___device constant__ ...

