CUDA: Introduction

Christian Trefftz / Greg Wolffe Grand Valley State University

Supercomputing 2008
Education Program
(modifications by Jernej Barbic)

Terms

- What is GPGPU?
- General-Purpose computing on a Graphics Processing Unit
- Using graphic hardware for non-graphic computations
$>$ What is CUDA?
- Compute Unified Device Architecture
- Software architecture for managing data-parallel programming

Motivation

GFLOPS

CPU vs. GPU

> CPU

- Fast caches
- Branching adaptability
- High performance
> GPU
- Multiple ALUs
- Fast onboard memory
- High throughput on parallel tasks

Executes program on each fragment/vertex
> CPUs are great for task parallelism
> GPUs are great for data parallelism

CPU vs. GPU - Hardware

DRAM

DRAM

CPU
GPU
> More transistors devoted to data processing

Traditional Graphics Pipeline

Vertex processing

$$
\sqrt{\Omega}
$$

Rasterizer Ω
Fragment processing
$\sqrt{\square}$
Renderer (textures)

Pixel / Thread Processing

GPU Architecture

Processing Element

> Processing element = thread processor

GPU Memory Architecture

Uncached:

> Registers
$>$ Shared Memory
> Local Memory
, Global Memory
Cached:
> Constant Memory
> Texture Memory

Data-parallel Programming

> Think of the GPU as a massively-threaded co-processor
$>$ Write "kernel" functions that execute on the device -- processing multiple data elements in parallel
$>$ Keep it busy! \Rightarrow massive threading
$>$ Keep your data close! \Rightarrow local memory

Hardware Requirements

> CUDA-capable video card
> Power supply
> Cooling
> PCI-Express

Acknowledgements

> NVidia Corporation developer.nvidia.com/CUDA
$>$ NVidia
Technical Brief - Architecture Overview CUDA Programming Guide
$>$ ACM Queue

- http://www.acmqueue.org/

A Gentle Introduction to CUDA Programming

Credits

\Rightarrow The code used in this presentation is based on code available in:

- the Tutorial on CUDA in Dr. Dobbs Journal
- Andrew Bellenir's code for matrix multiplication
- Igor Majdandzic's code for Voronoi diagrams
- NVIDIA's CUDA programming guide

Software Requirements/Tools

> CUDA device driver
> CUDA Toolkit (compiler, CUBLAS, CUFFT)
> CUDA Software Development Kit

- Emulator

Profiling:
> Occupancy calculator
> Visual profiller

To compute, we need to:

- Allocate memory for the computation on the GPU (incl. variables)
> Provide input data
> Specify the computation to be performed
> Read the results from the GPU (output)

Initially:

GPU Card's Memory

Allocate Memory in the GPU card

array_d
GPU Card's Memory

Copy content from the host's memory to the GPU card memory

Execute code on the GPU

Copy results back to the host memory

The Kernel

$>$ The code to be executed in the stream processors on the GPU
> Simultaneous execution in several (perhaps all) stream processors on the GPU
$>$ How is every instance of the kernel going to know which piece of data it is working on?

Grid and Block Size

- Grid size: The number of blocks
- Can be 1 or 2-dimensional array of blocks
- Each block is divided into threads
- Can be 1, 2, or 3-dimensional array of threads

Let's look at a very simple example

$>$ The code has been divided into two files:

- simple.c
- simple.cu
$>$ simple.c is ordinary code in C
$>$ It allocates an array of integers, initializes it to values corresponding to the indices in the array and prints the array.
$>$ It calls a function that modifies the array
$>$ The array is printed again.

simple.c

```
#include <stdio.h>
#define SIZEOFARRAY }6
extern void fillArray(int *a,int size);
/* The main program */
int main(int argc,char *argv[])
{
/* Declare the array that will be modified by the GPU */
    int a[SIZEOFARRAY];
    int i;
/* Initialize the array to 0s */
    for(i=0;i < SIZEOFARRAY;i++) {
        a[i]=0;
    }/*
    * Print the initial array */
    printf("Initial state of the array:\n");
for(i = 0;i< SIZEOFARRAY;i++) {
        printf("%d ",a[i]);
    }
    printf("\n");
/* Call the function that will in turn call the function in the GPU that will fill
the array */
    fillArray(a,SIZEOFARRAY);
    /* Now print the array after calling fillArray */
    printf("Final state of the array:\n");
    for(i = 0;i < SIZEOFARRAY;i++) {
        printf("%d ",a[i]);
    }
    printf("\n");
    return 0;
}
```


simple.cu

> simple.cu contains two functions

- fillArray(): A function that will be executed on the host and which takes care of:
- Allocating variables in the global GPU memory
- Copying the array from the host to the GPU memory
- Setting the grid and block sizes
- Invoking the kernel that is executed on the GPU
- Copying the values back to the host memory
- Freeing the GPU memory

fillatray (part 1)

```
#define BLOCK_SIZE 32
extern "C" void fillArray(int *array, int arraySize)
{
    int * array_d;
    cudaError_t result;
    /* cudaMalloc allocates space in GPU memory */
    result =
    cudaMalloc((void**) &array_d,sizeof(int)*arraySize);
    /* copy the CPU array into the GPU array_d */
    result = cudaMemcpy(array_d,array,sizeof(int)*arraySize,
        cudaMemcpyHostToDevice);
```


fillA:Array (part 2)

```
    /* Indicate block size */
    dim3 dimblock(BLOCK_SIZE);
    /* Indicate grid size */
    dim3 dimgrid(arraySize / BLOCK_SIZE);
    /* Call the kernel */
    cu_fillArray<<<dimgrid,dimblock>>>(array_d);
    result =
    ToHost);
    /* Release the GPU memory */
    cudaFree(array_d);
```

 /* Copy the results from GPU back to CPU memory */
 cudaMemcpy (array, array_d, sizeof(int) *arraySize, cudaMemcpyDevice
 \}

simple.cu (cont.)

> The other function in simple.cu is cu_fill|Array():

- This is the GPU kernel
- Identified by the keyword: \qquad
- Built-in variables:
- blockIdx. x : block index within the grid
- threadldx.x: thread index within the block

cu_fillArray

```
{_global___ void cu_fillArray(int * array_d)
    int x;
    x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    array_d[x]= x;
}
    global__ void cu_addIntegers(int * array_d1, int * array_d2)
{
    int x;
    x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    array_d1[x] += array_d2[x];
}
```


To compile:

$>$ nvcc simple.c simple.cu -o simple
$>$ The compiler generates the code for both the host and the GPU
> Demo on cuda.littlefe.net ...

What are those blockIds and threadlds?

$>$ With a minor modification to the code, we can print the blocklds and threadlds
> We will use two arrays instead of just one.

- One for the blockIds
- One for the threadlds
$>$ The code in the kernel:

```
x=blockIdx. x*BLOCK_SIZE+threadIdx.x;
block_d[x] = blockIdx.x;
thread_d[x]= threadIdx.x;
```


In the GPU:

Processing Elements

Hands-on Activity

$>$ Compile with (one single line)

```
nvcc blockAndThread.c blockAndThread.cu
    -o blockAndThread
```

> Run the program
. /blockAndThread
> Edit the file blockAndThread.cu
> Modify the constant BLOCK_SIZE. The current value is 8, try replacing it with 4.
> Recompile as above
$>$ Run the program and compare the output with the previous run.

This can be extended to 2 dimensions

> See files:

- blockAndThread2D.c
- blockAndThread2D.cu
> The gist in the kernel

```
x = blockIdx.x*BLOCK_SIZE+threadIdx.x;
y = blockIdx.y*BLOCK_SIZE+threadIdx.y;
pos = x*sizeOfArray+y;
block_dX[pos] = blockIdx.x;
```

> Compile and run blockAndThread2D

- nvcc blockAndThread2D.c blockAndThread2D.cu -o blockAndThread2D
- ./blockAndThread2D

When the kernel is called:

dim3 dimblock(BLOCK_SIZE,BLOCK_SIZE);
nBlocks = arraySize/BLOCK_SIZE;
dim3 dimgrid(nBlocks,nBlocks);
cu_fillArray<<<dimgrid,dimblock>>>
(... params...) ;

Another Example: saxpy

> SAXPY (Scalar Alpha X Plus Y)

- A common operation in linear algebra
$>$ CUDA: Ioop iteration \Rightarrow thread

Traditional Sequential Code

$$
\begin{aligned}
& \text { void saxpy_serial (int } n, \\
& \text { float alpha, } \\
& \text { float }{ }^{\star} \mathrm{x}, \\
& \text { float }{ }^{\star} \mathrm{y} \text {) }
\end{aligned}
$$

\{

$$
\begin{aligned}
& \text { for (int } i=0 ; i<n ; i++) \\
& y[i]=a l p h a^{*} x[i]+y[i] ;
\end{aligned}
$$

\}

CUDA Code

__global__ void saxpy_parallel (int n, float alpha,
float *x,
float *y) \{
int $i=b l o c k I d x \cdot x * b l o c k D i m \cdot x+$ threadIdx.x;
if $(i<n)$

$$
y[i]=a l p h a^{*} x[i]+y[i] ;
$$

\}

"Warps"

> Each block is split into SIMD groups of threads called "warps".
> Each warp contains the same number of threads, called the "warp size"
threads

Multi-processor 1

Keeping multiprocessors in mind...

> Each multiprocessor can process multiple blocks at a time.
> How many depends on the number of registers per thread and how much shared memory per block is required by a given kernel.
> If a block is too large, it will not fit into the resources of an MP.

Performance Tip: Block Size

> Critical for performance
> Recommended value is 192 or 256
> Maximum value is 512
> Should be a multiple of 32 since this is the warp size for Series 8 GPUs and thus the native execution size for multiprocessors
$>$ Limited by number of registers on the MP
> Series 8 GPU MPs have 8192 registers which are shared between all the threads on an MP

Performance Tip: Grid Size

- Recommended value is at least 100, but 1000 would scale for many generations of hardware
- Actual value depends on problem size
> It should be a multiple of the number of MPs for an even distribution of work (not a requirement though)
> Example: 24 blocks
- Grid will work efficiently on Series 8 (12 MPs), but it will waste resources on new GPUs with 32MPs

Memory Alignment

> Memory access faster if data aligned at 64 byte boundaries
$>$ Hence, allocate 2D arrays so that every row starts at a 64-byte boundary
> Tedious for a programmer

Allocating 2D arrays with "pitch"

> CUDA offers special versions of:

- Memory allocation of 2D arrays so that every row is padded (if necessary): cudaMallocPitch()
- Memory copy operations that take into account the pitch: cudaMemcpy2D()

Pitch

Columns

A simple example:

$>$ See pitch.cu
$>$ A matrix of 30 rows and 10 columns
$>$ The work is divided into 3 blocks of 10 rows:

- Block size is 10
- Grid size is 3

Key portions of the code (1)

$$
\begin{aligned}
\text { result }= & \text { cudaMallocPitch (} \\
& \text { (void **) \&devPtr, } \\
& \text { \&pitch, } \\
& \text { width*sizeof(int), } \\
& \text { height); }
\end{aligned}
$$

Key portions of the code (2)

```
result = cudaMemcpy2D(
    devPtr,
    pitch,
    mat,
        width*sizeof(int),
        width*sizeof(int),
        height,
        cudaMemcpyHostToDevice);
```


In the kernel:

```
__global___
void myKernel(int *devPtr,
    int pitch,
    int width,
    int height)
{
    int c;
    int thisRow;
    thisRow = blockIdx.x * 10 + threadIdx.x;
    int *row = (int *) ((char *) devPtr +
                        thisRow*pitch);
    for(c = 0;c < width;c++)
        row[c] = row[c] + 1;
}
```


The call to the kernel

$$
\begin{aligned}
\text { myKernel } \lll 3, & 10 \ggg(\\
& \text { devPtr, } \\
& \text { pitch, } \\
& \text { width, } \\
& \text { height }) ;
\end{aligned}
$$

pitch \Rightarrow Divide work by rows

$>$ Notice that when using pitch, we divide the work by rows.
$>$ Instead of using the 2D decomposition of 2D blocks, we are dividing the 2D matrix into blocks of rows.

Dividing the work by blocks:

Columns

An application that uses pitch: Mandelbrot

> The Mandelbrot set: A set of points in the complex plane, the boundary of which forms a fractal.
$>$ A complex number, c, is in the Mandelbrot set if, when starting with $x_{0}=0$ and applying the iteration

$$
x_{n+1}=x_{n}^{2}+c
$$

repeatedly, the absolute value of x_{n} never exceeds a certain
 number (that number depends on c) however large n gets.

Performance Tip: Code Divergence

> Control flow instructions diverge (threads take different paths of execution)
> Example: if, for, while
> Diverged code prevents SIMD execution - it forces serial execution (kills efficiency)
> One approach is to invoke a simpler kernel multiple times
> Liberal use of __syncthreads()

Performance Tip: Memory Latency

> 4 clock cycles for each memory read/write plus additional 400-600 cycles for latency

- Memory latency can be hidden by keeping a large number of threads busy
> Keep number of threads per block (block size) and number of blocks per grid (grid size) as large as possible
> Constant memory can be used for constant data (variables that do not change).
> Constant memory is cached.

Performance Tip: Memory Reads

> Device is capable of reading a 32, 64 or 128-bit number from memory with a single instruction
> Data has to be aligned in memory (this can be accomplished by using cudaMallocPitch() calls)
$>$ If formatted properly, multiple threads from a warp can each receive a piece of memory with a single read instruction

Watchdog timer

> OS may force programs using the GPU to time out if running too long
> Exceeding the limit can cause CUDA program failure.
> Possible solution: run CUDA on a GPU that is NOT attached to a display.

Resources on line

> http://www.acmqueue.org/modules.php?name= Content\&pa=showpage\&pid=532
$>$ http:///www.ddi.com/hpc-high-performancecomputing/207200659
> http:///www.nvidia.com/object/cuda home.html井
> http:///www.nvidia.com/object/cuda learn.html
$>$ "Computation of Voronoi diagrams using a graphics processing unit" by Igor Majdandzic et al. available through IEEE Digital Library, DOI: 10.1109/EIT.2008.4554342

A Real Application

> The Voronoi Diagram: A fundamental data structure in
Computational Geometry

Definition

$>$ Definition : Let S be a set of n sites in Euclidean space of dimension d. For each site p of S, the Voronoi cell $V(p)$ of p is the set of points that are closer to p than to other sites of S. The Voronoi diagram V(S) is the space partition induced by Voronoi cells.

Algorithms

$>$ The classical sequential algorithm has complexity $O(n \log n)$ where n is the number of sites (seeds).
$>$ If one only needs an approximation, on a grid of points (e.g. digital display):

- Assign a different color to each seed
- Calculate the distance from every point in the grid to all seeds
- Color each point with the color of its closest seed

Lends itself to implementation on a GPU...

> The calculation for every pixel is a good candidate to be carried out in parallel...
$>$ Notice that the locations of the seeds are read-only in the kernel
$>$ Thus we can use the texture map area in the GPU card, which is a fast read-only cache to store the seeds:
__device____constant__...

