CS-520 Assignment \#3: Constrained Particle System

Instructor: Jernej Barbic

Models of 1D deformable chain-like structures are important tools for computer animation [3, 6, 5]. In this assignment, we will use particle systems to model a simple chain, with an emphasis on "hard" constraints.

Consider an open chain composed of $N+1$ point masses, $m=1 /(N+1)[k g]$, at positions $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ (in meters), with adjacent masses connected by rigid (inextensible) edges of length $h=1 / N[\mathrm{~m}]$. We will use the Lagrangian dynamics approach of [2] ("Constrained Dynamics" chapter) to apply suitable constraints to the particle system using Lagrange multipliers (see also [1]). The "rigid edge constraint" can be modeled with the scalar constraint function,

$$
\begin{equation*}
C^{R I G I D}\left(\mathbf{x}_{i}, \mathbf{x}_{i+1} ; h\right)=\left\|\mathbf{x}_{i}-\mathbf{x}_{i+1}\right\|-h=0, \quad i=0, \ldots, N-1 \tag{1}
\end{equation*}
$$

To keep the chain from falling away under gravity, use the "pin constraint"

$$
\begin{equation*}
C^{P I N}\left(\mathbf{x}_{i} ; \mathbf{p}\right)=\left\|\mathbf{x}_{i}-\mathbf{p}\right\|=0 \tag{2}
\end{equation*}
$$

to pin mass \#0 at the origin, $\mathbf{p}=0$. To make things a little more interesting, similar to [2] we'll constrain mass \# N to lie on a ring of unit diameter using

$$
\begin{equation*}
C^{R I N G}\left(\mathbf{x}_{N} \quad ; \mathbf{p}^{R I N G}\right)=\left\|\mathbf{x}_{N} \quad-\mathbf{p}^{R I N G}\right\|-0.5=0 \tag{3}
\end{equation*}
$$

where $\mathbf{p}^{R I N G}=(0,-0.5,0)^{T}$. Also, make the simulation run entirely in the xy plane, i.e., $\mathrm{z}=0$ for all particles.
Implement a simple interactive environment to observe the dynamics of the chain, e.g., for $N=11$, with the masses drawn as small spheres, and edges as cylinders. In addition to downward gravitational acceleration, $\overrightarrow{\mathbf{g}}=(0,-1,0)$ (in $\left[\mathrm{ms}^{-2}\right]$), use the cursor keys to interact with the model by applying an additional nonzero translational acceleration $\overrightarrow{\mathbf{a}}$ of your choosing. Use the simple forward Euler method (or midpoint if you choose) to integrate the resulting equations of motion.

Make sure to implement Baumgarte stabilization [4] to solve the constrained equations using linear feedback control, i.e., replace each constraint equation $C=0$ by

$$
\begin{equation*}
0=\ddot{C}+2 b \dot{C}+b^{2} C . \tag{4}
\end{equation*}
$$

What b value works best? What happens when the damping parameter b is set too high, or too low? Can you determine b automatically? Momentarily disable $C^{R I N G}$ and drop the chain from a horizontal position: (a) compare the stabilized system $(b>0)$ to the unstabilized one $(b=0)$; (b) plot the error in the constraints as a function of time.

Next, try adding some simple velocity damping, $\mathbf{f}_{\mathbf{i}}=-\alpha \dot{\mathbf{x}}_{i}$ to give the chain an "underwater effect." How much damping can you add before stability becomes a problem?

In addition to submitting your code, briefly write-up your derived equations, and describe your results and answers to the previous questions. Record brief animations of your results in any convenient way.

References

[1] David Baraff. Linear-Time Dynamics using Lagrange Multipliers. In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, pages 137-146, August 1996.
[2] David Baraff and Andrew Witkin. Physically Based Modeling: Principles and Practice. In SIGGRAPH 2001 Course Notes. ACM SIGGRAPH, 2001.
[3] Ronen Barzel. Faking Dynamics of Ropes and Springs. IEEE Computer Graphics \& Applications, 17(3):31-39, May - June 1997.
[4] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Comp. Meth. in Appl. Mech. and Eng., 1:1-16, 1972.
[5] Johnny T. Chang, Jingyi Jin, and Yizhou Yu. A Practical Model for Hair Mutual Interactions. In ACM SIGGRAPH Symposium on Computer Animation, pages 73-80, July 2002.
[6] D. K. Pai. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum, 21(3):347-352, 2002.

