

Rotations
 Rotaions

- Very important in computer animation and robotics
- Joint angles, rigid body orientations, camera parameters
- 2D or 3D

Rotations in Three Dimensions

- Orthogonal matrices:

$$
R R^{\top}=R^{\top} R=I
$$

Representing Rotations in 3D

- Rotations in 3D have essentially three parameters

$$
\operatorname{det}(R)=1
$$

- Axis + angle (2 DOFs + 1DOFs)
- How to represent the axis?

$$
R=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]
$$ Longitude / lattitude have singularities

- $3 x 3$ matrix
- 9 entries (redundant)

Euler Angles

1. Yaw
rotate around y-axis
2. Pitch
rotate around (rotated) x-axis
3. Roll
rotate around (rotated) y-axis

Choice of rotation axis sequence for Euler Angles

- 12 choices:

XYX, XYZ, XZX, XZY,
YXY, YXZ, YZX, YZY, ZXY, ZXZ, ZYX, ZYZ

- Each choice can use static axes, or rotated axes, so we have a total of 24 Euler Angle versions!

Example: XYZ Euler Angles

- First rotate around X by angle θ_{1}, then around Y by angle θ_{2}, then around Z by angle θ_{3}.
- Used in CMU Motion Capture Database AMC files
- Rotation matrix is:

$$
R=\left[\begin{array}{ccc}
\cos \left(\theta_{3}\right) & -\sin \left(\theta_{3}\right) & 0 \\
\sin \left(\theta_{3}\right) & \cos \left(\theta_{3}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \left(\theta_{2}\right) & 0 & \sin \left(\theta_{2}\right) \\
0 & 1 & 0 \\
-\sin \left(\theta_{2}\right) & 0 & \cos \left(\theta_{2}\right)
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{1}\right) & -\sin \left(\theta_{1}\right) \\
0 & \sin \left(\theta_{1}\right) & \cos \left(\theta_{1}\right)
\end{array}\right]
$$

Outline

- Rotations
- Quaternions
- Quaternion Interpolation

Quaternions

- Generalization of complex numbers
- Three imaginary numbers: $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$
$i^{2}=-1, j^{2}=-1, \boldsymbol{k}^{2}=-1$,
$i j=k, j k=i, k i=j, j i=-k, k j=-i, i k=-j$
- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}, \quad s, x, y, z$ are scalars

Quaternions

- Invented by Hamilton in 1843 in Dublin, Ireland
- Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication
$\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{i} \mathrm{j} k=-1$
\& cut it on a stone of this bridge.

Quaternions

- Quaternions are not commutative!
$q_{1} q_{2} \neq q_{2} q_{1}$
- However, the following hold:
$\left(q_{1} q_{2}\right) q_{3}=q_{1}\left(q_{2} q_{3}\right)$
$\left(q_{1}+q_{2}\right) q_{3}=q_{1} q_{3}+q_{2} q_{3}$
$q_{1}\left(q_{2}+q_{3}\right)=q_{1} q_{2}+q_{1} q_{3}$
$\alpha\left(q_{1}+q_{2}\right)=\alpha q_{1}+\alpha q_{2} \quad$ (α is scalar)
$\left(\alpha q_{1}\right) q_{2}=\alpha\left(q_{1} q_{2}\right)=q_{1}\left(\alpha q_{2}\right) \quad(\alpha$ is scalar)
- I.e., all usual manipulations are valid, except cannot reverse multiplication order

Quaternions

- Exercise: multiply two quaternions

$$
(2-\boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k})(-1+\boldsymbol{i}+4 \boldsymbol{j}-2 \boldsymbol{k})=\ldots
$$

Quaternion Properties

- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$
- Norm: $|\mathrm{q}|^{2}=\mathrm{s}^{2}+\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
- Conjugate quaternion: $\bar{q}=s-x \boldsymbol{i}-y \boldsymbol{j}-z \boldsymbol{k}$
- Inverse quaternion: $\mathrm{q}^{-1}=\overline{\mathrm{q}} /|\mathrm{q}|^{2}$
- Unit quaternion: $|q|=1$
- Inverse of unit quaternion: $\mathrm{q}^{-1}=\overline{\mathrm{q}}$

Quaternions and Rotations

- Rotations are represented by unit quaternions
- $q=s+x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$

$$
s^{2}+x^{2}+y^{2}+z^{2}=1
$$

- Unit quaternion sphere (unit sphere in 4D)

Source:
Research unit sphere in $4 D$

Rotations to Unit Quaternions

- Let (unit) rotation axis be [$\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}$], and angle θ
- Corresponding quaternion is
$\mathrm{q}=\cos (\theta / 2)+$
$\sin (\theta / 2) u_{x} \boldsymbol{i}+\sin (\theta / 2) u_{y} \boldsymbol{j}+\sin (\theta / 2) u_{z} \boldsymbol{k}$
- Composition of rotations q_{1} and q_{2} equals $\mathrm{q}=\mathrm{q}_{2} \mathrm{q}_{1}$
- 3D rotations do not commute!

Unit Quaternions to Rotations

- Let v be a (3-dim) vector and let q be a unit quaternion
- Then, the corresponding rotation transforms vector v to $\mathrm{q} \boldsymbol{v} \mathrm{q}^{-1}$
(v is a quaternion with scalar part equaling 0 , and vector part equaling v)

For $\mathrm{q}=\mathrm{a}+\mathrm{b} \boldsymbol{i}+\mathrm{c} \boldsymbol{j}+\mathrm{d} \boldsymbol{k}$
$R=\left(\begin{array}{ccc}a^{2}+b^{2}-c^{2}-d^{2} & 2 b c-2 a d & 2 b d+2 a c \\ 2 b c+2 a d & a^{2}-b^{2}+c^{2}-d^{2} & 2 c d-2 a b \\ 2 b d-2 a c & 2 c d+2 a b & a^{2}-b^{2}-c^{2}+d^{2}\end{array}\right)$

Outline

- Rotations
- Quaternions
- Quaternion Interpolation

Quaternions

- Quaternions q and -q give the same rotation!
- Other than this, the relationship between rotations and quaternions is unique

Quaternion Interpolation

- Better results than Euler angles
- A quaternion is a point on the 4-D unit sphere
- Interpolating rotations corresponds to curves
 on the 4-D sphere -

Spherical Linear intERPolation (SLERPing)

- Interpolate along the great circle on the 4-D unit sphere
- Move with constant angular velocity along the great circle between the two points
- Any rotation is given by two quaternions, so there are two SLERP choices; pick the shortest

SLERP

$\operatorname{Slerp}\left(q_{1}, q_{2}, u\right)=\frac{\sin ((1-u) \theta)}{\sin (\theta)} q_{1}+\frac{\sin (u \theta)}{\sin (\theta)} q_{2}$

$$
\cos (\theta)=q_{1} \cdot q_{2}=
$$

$=s_{1} s_{2}+x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

- u varies from 0 to 1
- $\mathrm{q}_{\mathrm{m}}=\mathrm{s}_{\mathrm{m}}+\mathrm{x}_{\mathrm{m}} \boldsymbol{i}+\mathrm{y}_{\mathrm{m}} \boldsymbol{j}+\mathrm{z}_{\mathrm{m}} \boldsymbol{k}$, for $\mathrm{m}=1,2$
- The above formula does not produce a unit quaternion and must be normalized; replace q by q/ |q|

Interpolating more than two rotations

- Simplest approach: connect consecutive quaternions using SLERP
- Continuous rotations
- Angular velocity not smooth at the joints

Interpolation with smooth velocities

- Use splines on the unit quaternion sphere
- Reference: Ken Shoemake in the SIGGRAPH '85 proceedings (Computer Graphics, V. 19, No. 3, P. 245)

Bezier Spline

- Four control points
- points P1 and P4 are on the curve
- points P2 and P3 are off the curve; they give curve tangents at beginning and end

Bezier Spline

- $p(0)=P 1, p(1)=P 4$,
- $\mathrm{p}^{\prime}(0)=3(\mathrm{P} 2-\mathrm{P} 1)$
- $p^{\prime}(1)=3(P 4-P 3)$
- Convex Hull property: curve contained within the convex hull of control points
- Scale factor " 3 " is chosen to make "velocity" approximately constant

The Bezier Spline Formula
$\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right]\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \\ x_{4} & y_{4} & z_{4}\end{array}\right]$
Bezier basis $\quad \begin{gathered}\text { Bezier } \\ \text { control }\end{gathered}$

- $[x, y, z]$ is point on spline corresponding to u
- u varies from 0 to 1
- $\mathrm{P} 1=\left[\begin{array}{lll}x_{1} & y_{1} & z_{1}\end{array}\right] \quad P 2=\left[x_{2} y_{2} z_{2}\right]$
- $P 3=\left[x_{3} y_{3} z_{3}\right] \quad P 4=\left[x_{4} y_{4} z_{4}\right]$

DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.

Bezier Control Points for Quaternions

- Given quaternions $\mathrm{q}_{\mathrm{n}-1}, \mathrm{q}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}+1}$, form:
$\bar{a}_{n}=\operatorname{Slerp}\left(\operatorname{Slerp}\left(q_{n-1}, q_{n}, 2.0\right), q_{n+1}, 0.5\right)$
$\mathrm{a}_{\mathrm{n}}=\operatorname{Slerp}\left(\mathrm{a}_{\mathrm{n}}, \overline{\mathrm{a}_{\mathrm{n}}}, 1.0 / 3\right)$
$\mathrm{b}_{\mathrm{n}}=\operatorname{Serp}\left(\mathrm{a}_{\mathrm{n}}, \overline{\mathrm{a}}_{\mathrm{n}},-1.0 / 3\right)$

Interpolating Many Rotations on Quaternion Sphere

- Given quaternions q_{1}, \ldots, q_{N}, form Bezier spline control points (previous slide)
- Spline 1: $q_{1}, a_{1}, b_{2}, q_{2}$
- Spline 2: $q_{2}, a_{2}, b_{3}, q_{3}$ etc.
- Need a_{1} and b_{N}; can set $a_{1}=\operatorname{Slerp}\left(q_{1}, \operatorname{Sierp}\left(q_{3}, q_{2}, 2.0\right), 1.0 / 3\right)$ $b_{N}=\operatorname{Slerp}\left(q_{N}, \operatorname{Slerp}\left(q_{N-2}, q_{N-1}, 2.0\right), 1.0 / 3\right)$
- To evaluate a spline at any t, use DeCasteljau construction

