

Rotations

- Very important in computer animation and robotics
- Joint angles, rigid body orientations, camera parameters
- 2D or 3D

2

Gimbal Lock

When all three gimbals are lined up (in the same plane), the system can only move in two dimensions from this configuration, not three, and is in *gimbal lock*.

> Source: Wikipedia 7

> > 11

Outline

- Rotations
- Quaternions
- · Quaternion Interpolation

Quaternions

- · Generalization of complex numbers
- Three imaginary numbers: *i*, *j*, *k i*² = -1, *j*² = -1, *k*² = -1,

•
$$q = s + x i + y j + z k$$
, s,x,y,z are scalars

12

- Interpolate along the great circle on the 4-D unit sphere
- Move with constant angular velocity along the great circle between the two points
- San Francisco to London

23

• Any rotation is given by two quaternions, so there are two SLERP choices; pick the shortest

SLERP

$$Slerp(q_1, q_2, u) = \frac{\sin((1-u)\theta)}{\sin(\theta)}q_1 + \frac{\sin(u\theta)}{\sin(\theta)}q_2$$

$$\cos(\theta) = q_1 \cdot q_2 =$$

$$= s_1 s_2 + x_1 x_2 + y_1 y_2 + z_1 z_2$$
• u varies from 0 to 1
• q_m = s_m + x_m i + y_m j + z_m k, for m = 1,2
• The above formula does not produce a unit quaternion and must be normalized;
replace q by q / |q|

Interpolating Many Rotations on Quaternion Sphere

- Given quaternions $q_1,\,...,\,q_N\,,$ form Bezier spline control points (previous slide)
- Spline 1: q₁, a₁, b₂, q₂
- Spline 2: q₂, a₂, b₃, q₃ etc.
- Need a_1 and b_N ; can set $a_1 = Slerp(q_1, Slerp(q_3, q_2, 2.0), 1.0 / 3)$ $b_N = Slerp(q_N, Slerp(q_{N-2}, q_{N-1}, 2.0), 1.0 / 3)$
- To evaluate a spline at any t, use DeCasteljau construction $$_{\rm \tiny 33}$$