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Geometric Proximity Queries	



 Given two object, how would you check: 	


  	



–  If they intersect with each other while moving?	



–  If they do not interpenetrate each other, how 
far are they apart?	



–  If  they  overlap,  how  much  is  the  amount  of 
penetration  	
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Collision Detection	



•  Update configurations w/ TXF matrices	



•  Check for edge-edge intersection in 2D	


  (Check for edge-face intersection in 3D)	



•  Check every point of A inside of B & 	


   every point of B inside of A	


	



•  Check for pair-wise edge-edge intersections	



Imagine larger input size:  N = 1000+ ……	
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Classes of Objects & Problems 

•  2D vs. 3D	


•  Convex vs. Non-Convex	


•  Polygonal vs. Non-Polygonal	


•  Open surfaces vs. Closed volumes	


•  Geometric vs. Volumetric	


•  Rigid vs. Non-rigid (deformable/flexible)	


•  Pairwise vs. Multiple (N-Body)	


•  CSG vs. B-Rep	


•  Static vs. Dynamic	


And so on…  This may include other geometric 

representation schemata, etc.	
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Some Possible Approaches 

•  Geometric methods	


•  Algebraic Techniques	


•  Hierarchical Bounding Volumes	


•  Spatial Partitioning	


•  Others (e.g. optimization)	
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Voronoi Diagrams 

  Given a set S of  n  points in R2 ,  for each point pi 
in S, there is the set of points (x, y)  in the plane 
that are closer to pi  than any other point in S, 
called  Voronoi polygons. The collection of n 
Voronoi polygons given the n points in the set S is 
the "Voronoi diagram", Vor(S), of the point set S. 	



	



Intuition: To partition the plane into regions, each of 
these is the set of points that are closer to a point pi in 
S than any other.  The partition is based on the set of 
closest points, e.g. bisectors that have 2 or 3 closest 
points.   
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Generalized Voronoi Diagrams 

  The extension of the Voronoi diagram to 
higher dimensional features (such as 
edges and facets, instead of points); i.e. 
the set of points closest to a feature, e.g. 
that of a polyhedron.  

  FACTS: 
–  In general, the generalized Voronoi diagram has 

quadratic surface boundaries in it.  
–  If the polyhedron is convex, then its generalized 

Voronoi diagram has planar boundaries.  
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Voronoi Regions 

  A Voronoi region associated with a feature is a 
set of points that are closer to that feature than 
any other.   

  FACTS: 
–  The Voronoi regions form a partition of space outside 

of the polyhedron according to the closest feature.   
–  The collection of Voronoi regions of each polyhedron is 

the generalized Voronoi diagram of the polyhedron.   
–  The generalized Voronoi diagram of a convex 

polyhedron has linear size and consists of polyhedral 
regions. And, all Voronoi regions are convex. 



UNC Chapel Hill M. C. Lin 

Voronoi Marching 

Basic Ideas: 
  Coherence: local geometry does not change 

much, when computations repetitively 
performed over successive small time intervals 

  Locality: to "track" the pair of closest features 
between 2 moving convex polygons(polyhedra) 
w/ Voronoi  regions 

  Performance: expected constant running 
time, independent of the geometric complexity 



UNC Chapel Hill M. C. Lin 

Simple 2D Example 

A

B

P1

P2

Objects A & B and their Voronoi regions:  P1 and 
P2 are the pair of closest points between A and B.    
Note P1 and P2 lie within the Voronoi regions of 
each other.	
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Basic Idea for Voronoi Marching 
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Linear Programming 

In  general,  a  d-dimensional  linear  program-
ming (or linear optimization) problem may 
be posed as follows: 	



 	



  Given a finite set A in Rd 	


  For each a  in A, a constant Ka  in R, c in Rd 	


  Find  x in Rd which minimize <x, c>	


  Subject to <a, x>  ≥   Ka, for all a  in A . 	



where <*, *> is standard inner product in  Rd. 	
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LP for Collision Detection 

Given two finite sets A, B in Rd 	


For each a in A and b in B, 	


Find x in Rd which minimize whatever	


Subject to 	

<a, x> > 0, for all a in A	


And 	

         <b, x> < 0, for all b in B	


	


where d = 2 (or 3).	
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Minkowski Sums/Differences 

 Minkowski Sum (A, B) = { a + b  | a ∈ 
A, b ∈ B } 

  
 Minkowski Diff (A, B) = { a - b  | a ∈ A, 

b ∈ B } 
  
 A and B collide iff Minkowski 

Difference(A,B) contains the point 0. 
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Some Minkowski Differences 

A B

A B
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Minkowski Difference & Translation 

  Minkowski-Diff(Trans(A, t1), Trans(B, t2)) = 
Trans(Minkowski-Diff(A,B), t1 - t2) 

 
⇒ Trans(A, t1) and Trans(B, t2) intersect iff 

Minkowski-Diff(A,B) contains point (t2  - t1). 
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Properties 

  Distance 
–  distance(A,B) = min a ∈ A,  b∈ B  || a - b ||2 
–  distance(A,B) = min c ∈ Minkowski-Diff(A,B)  || c ||2 
–  if A and B disjoint, c is a point on boundary of 

Minkowski difference 
 

  Penetration Depth  
–  pd(A,B) = min{ || t ||2 | A ∩ Translated(B,t) = ∅ } 
–  pd(A,B) = mint ∉Minkowski-Diff(A,B) || t ||2  
–  if A and B intersect, t is a point on boundary of 

Minkowski difference 
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Practicality 

 Expensive to compute boundary of 
Minkowski difference: 
– For convex polyhedra, Minkowski 

difference may take O(n2) 
– For general polyhedra, no known 

algorithm of complexity less than O(n6) 
is known  
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GJK for Computing Distance 
between Convex Polyhedra 

GJK-DistanceToOrigin ( P )   // dimension is m 
1.   Initialize P0  with m+1 or fewer points. 
2.   k  = 0 
3.   while (TRUE) {   
4.       if origin is within CH( Pk ), return 0 
5.       else  {  
6.             find x ∈ CH(Pk) closest to origin, and Sk ⊂  Pk s.t. x ∈ CH(Sk) 
7.                  see if any point p-x in P more extremal in direction -x  
8.           if no such point is found, return |x| 
9.                  else { 
10.              Pk+1 = Sk ∪ {p-x} 
11.              k = k + 1 
12.          } 
13.      } 
14.   } 
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An Example of GJK 
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Running Time of GJK 

  Each iteration of the while loop requires O(n) time.   

  O(n) iterations possible.  The authors claimed 
between 3 to 6 iterations on average for any 
problem size, making this “expected” linear. 

  Trivial O(n) algorithms exist if we are given the 
boundary representation of a convex object, but 
GJK will work on point sets - computes CH lazily. 
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More on GJK 

Given A = CH(A’)   A’ = { a1, a2, ... , an } and 
           B = CH(B’)   B’ = { b1, b2, ... , bm } 
 

  Minkowski-Diff(A,B) = CH(P), P = {a - b | a∈ A’, b∈ B’} 
  Can compute points of P on demand: 

–  p-x = a-x - bx  where a-x is the point of A’ extremal in 
direction -x, and bx is the point of B’ extremal in 
direction x. 

  The loop body would take O(n + m) time, producing 
the “expected” linear performance overall. 
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Large, Dynamic Environments 

  For dynamic simulation where the velocity 
and acceleration of all objects are known 
at each step, use the scheduling scheme 
(implemented as heap) to prioritize 
“critical events” to be processed. 

  Each object pair is tagged with the 
estimated time to next collision.  Then, 
each pair of objects is processed 
accordingly.  The heap is updated when a 
collision occurs. 
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Scheduling Scheme 

  amax:  an upper bound on relative acceleration 
between any two points on any pair of objects.   

  alin: relative absolute linear 	


  α: relative rotational accelerations 	


  ω: relative rotational velocities 
  r: vector difference btw CoM of two bodies 	


  d: initial separation for two given objects 

amax  = | alin + α x r + ω x ω x r |	


vi  = | vlin + ω x  r | 	



  Estimated Time to collision:	


	

    	

 	

tc = { (vi

2 + 2 amax d)1/2 - vi } / amax 
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Collide System Architecture 

Analysis &  
Response 

Sweep & Prune 

Simulation 
Exact  
Collision 
Detection 

Collision 

Transform Overlap 

Parameters 
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Sweep and Prune 

  Compute the axis-aligned bounding box 
(fixed vs. dynamic) for each object 

  Dimension Reduction by projecting boxes 
onto each x, y, z- axis 

  Sort the endpoints and find overlapping 
intervals 

  Possible collision -- only if projected intervals 
overlap in all 3 dimensions  
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Sweep & Prune 
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Updating Bounding Boxes 

 Coherence (greedy algorithm) 
 

 Convexity properties (geometric 
properties of convex polytopes) 

 

 Nearly constant time, if the motion is 
relatively “small” 
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Use of Sorting Methods 

  Initial sort -- quick sort runs in O(m log m) 
just as in any ordinary situation 

  Updating -- insertion sort runs in O(m) due 
to coherence.   We sort an almost sorted 
list from last stimulation step.  In fact, we 
look for “swap” of positions in all 3 
dimension. 
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Implementation Issues 

 Collision matrix --  basically 
adjacency matrix 

 Enlarge bounding volumes with 
some tolerance threshold 

 

 Quick start polyhedral collision test 
-- using bucket sort & look-up table 


