
UNC Chapel Hill M. C. Lin

References

  Additional lecture notes for 2/18/02.

  I-COLLIDE: Interactive and Exact Collision Detection
for Large-Scale Environments, by Cohen, Lin,
Manocha & Ponamgi, Proc. of ACM Symposium on
Interactive 3D Graphics, 1995.
(More details in Chapter 3 of M. Lin's Thesis)

  A Fast Procedure for Computing the Distance between
Objects in Three-Dimensional Space, by E. G. Gilbert,
D. W. Johnson, and S. S. Keerthi, In IEEE Transaction
of Robotics and Automation, Vol. RA-4:193--203, 1988.

UNC Chapel Hill M. C. Lin

Geometric Proximity Queries	

 Given two object, how would you check: 	

 	

–  If they intersect with each other while moving?	

–  If they do not interpenetrate each other, how
far are they apart?	

–  If they overlap, how much is the amount of
penetration 	

UNC Chapel Hill M. C. Lin

Collision Detection	

•  Update configurations w/ TXF matrices	

•  Check for edge-edge intersection in 2D	

 (Check for edge-face intersection in 3D)	

•  Check every point of A inside of B & 	

 every point of B inside of A	

	

•  Check for pair-wise edge-edge intersections	

Imagine larger input size: N = 1000+ ……	

UNC Chapel Hill M. C. Lin

Classes of Objects & Problems

•  2D vs. 3D	

•  Convex vs. Non-Convex	

•  Polygonal vs. Non-Polygonal	

•  Open surfaces vs. Closed volumes	

•  Geometric vs. Volumetric	

•  Rigid vs. Non-rigid (deformable/flexible)	

•  Pairwise vs. Multiple (N-Body)	

•  CSG vs. B-Rep	

•  Static vs. Dynamic	

And so on… This may include other geometric

representation schemata, etc.	

UNC Chapel Hill M. C. Lin

Some Possible Approaches

•  Geometric methods	

•  Algebraic Techniques	

•  Hierarchical Bounding Volumes	

•  Spatial Partitioning	

•  Others (e.g. optimization)	

UNC Chapel Hill M. C. Lin

Voronoi Diagrams

  Given a set S of n points in R2 , for each point pi
in S, there is the set of points (x, y) in the plane
that are closer to pi than any other point in S,
called Voronoi polygons. The collection of n
Voronoi polygons given the n points in the set S is
the "Voronoi diagram", Vor(S), of the point set S. 	

	

Intuition: To partition the plane into regions, each of
these is the set of points that are closer to a point pi in
S than any other. The partition is based on the set of
closest points, e.g. bisectors that have 2 or 3 closest
points.

UNC Chapel Hill M. C. Lin

Generalized Voronoi Diagrams

  The extension of the Voronoi diagram to
higher dimensional features (such as
edges and facets, instead of points); i.e.
the set of points closest to a feature, e.g.
that of a polyhedron.

  FACTS:
–  In general, the generalized Voronoi diagram has

quadratic surface boundaries in it.
–  If the polyhedron is convex, then its generalized

Voronoi diagram has planar boundaries.

UNC Chapel Hill M. C. Lin

Voronoi Regions

  A Voronoi region associated with a feature is a
set of points that are closer to that feature than
any other.

  FACTS:
–  The Voronoi regions form a partition of space outside

of the polyhedron according to the closest feature.
–  The collection of Voronoi regions of each polyhedron is

the generalized Voronoi diagram of the polyhedron.
–  The generalized Voronoi diagram of a convex

polyhedron has linear size and consists of polyhedral
regions. And, all Voronoi regions are convex.

UNC Chapel Hill M. C. Lin

Voronoi Marching

Basic Ideas:
  Coherence: local geometry does not change

much, when computations repetitively
performed over successive small time intervals

  Locality: to "track" the pair of closest features
between 2 moving convex polygons(polyhedra)
w/ Voronoi regions

  Performance: expected constant running
time, independent of the geometric complexity

UNC Chapel Hill M. C. Lin

Simple 2D Example

A

B

P1

P2

Objects A & B and their Voronoi regions: P1 and
P2 are the pair of closest points between A and B.
Note P1 and P2 lie within the Voronoi regions of
each other.	

UNC Chapel Hill M. C. Lin

Basic Idea for Voronoi Marching

UNC Chapel Hill M. C. Lin

Linear Programming

In general, a d-dimensional linear program-
ming (or linear optimization) problem may
be posed as follows: 	

 	

  Given a finite set A in Rd 	

  For each a in A, a constant Ka in R, c in Rd 	

  Find x in Rd which minimize <x, c>	

  Subject to <a, x> ≥ Ka, for all a in A . 	

where <*, *> is standard inner product in Rd. 	

UNC Chapel Hill M. C. Lin

LP for Collision Detection

Given two finite sets A, B in Rd 	

For each a in A and b in B, 	

Find x in Rd which minimize whatever	

Subject to 	

<a, x> > 0, for all a in A	

And 	

 <b, x> < 0, for all b in B	

	

where d = 2 (or 3).	

UNC Chapel Hill M. C. Lin

Minkowski Sums/Differences

 Minkowski Sum (A, B) = { a + b | a ∈
A, b ∈ B }

 Minkowski Diff (A, B) = { a - b | a ∈ A,

b ∈ B }

 A and B collide iff Minkowski

Difference(A,B) contains the point 0.

UNC Chapel Hill M. C. Lin

Some Minkowski Differences

A B

A B

UNC Chapel Hill M. C. Lin

Minkowski Difference & Translation

  Minkowski-Diff(Trans(A, t1), Trans(B, t2)) =
Trans(Minkowski-Diff(A,B), t1 - t2)

⇒ Trans(A, t1) and Trans(B, t2) intersect iff

Minkowski-Diff(A,B) contains point (t2 - t1).

UNC Chapel Hill M. C. Lin

Properties

  Distance
–  distance(A,B) = min a ∈ A, b∈ B || a - b ||2
–  distance(A,B) = min c ∈ Minkowski-Diff(A,B) || c ||2
–  if A and B disjoint, c is a point on boundary of

Minkowski difference

  Penetration Depth
–  pd(A,B) = min{ || t ||2 | A ∩ Translated(B,t) = ∅ }
–  pd(A,B) = mint ∉Minkowski-Diff(A,B) || t ||2
–  if A and B intersect, t is a point on boundary of

Minkowski difference

UNC Chapel Hill M. C. Lin

Practicality

 Expensive to compute boundary of
Minkowski difference:
– For convex polyhedra, Minkowski

difference may take O(n2)
– For general polyhedra, no known

algorithm of complexity less than O(n6)
is known

UNC Chapel Hill M. C. Lin

GJK for Computing Distance
between Convex Polyhedra

GJK-DistanceToOrigin (P) // dimension is m
1. Initialize P0 with m+1 or fewer points.
2. k = 0
3. while (TRUE) {
4. if origin is within CH(Pk), return 0
5. else {
6. find x ∈ CH(Pk) closest to origin, and Sk ⊂ Pk s.t. x ∈ CH(Sk)
7. see if any point p-x in P more extremal in direction -x
8. if no such point is found, return |x|
9. else {
10. Pk+1 = Sk ∪ {p-x}
11. k = k + 1
12. }
13. }
14. }

UNC Chapel Hill M. C. Lin

An Example of GJK

UNC Chapel Hill M. C. Lin

Running Time of GJK

  Each iteration of the while loop requires O(n) time.

  O(n) iterations possible. The authors claimed
between 3 to 6 iterations on average for any
problem size, making this “expected” linear.

  Trivial O(n) algorithms exist if we are given the
boundary representation of a convex object, but
GJK will work on point sets - computes CH lazily.

UNC Chapel Hill M. C. Lin

More on GJK

Given A = CH(A’) A’ = { a1, a2, ... , an } and
 B = CH(B’) B’ = { b1, b2, ... , bm }

  Minkowski-Diff(A,B) = CH(P), P = {a - b | a∈ A’, b∈ B’}
  Can compute points of P on demand:

–  p-x = a-x - bx where a-x is the point of A’ extremal in
direction -x, and bx is the point of B’ extremal in
direction x.

  The loop body would take O(n + m) time, producing
the “expected” linear performance overall.

UNC Chapel Hill M. C. Lin

Large, Dynamic Environments

  For dynamic simulation where the velocity
and acceleration of all objects are known
at each step, use the scheduling scheme
(implemented as heap) to prioritize
“critical events” to be processed.

  Each object pair is tagged with the
estimated time to next collision. Then,
each pair of objects is processed
accordingly. The heap is updated when a
collision occurs.

UNC Chapel Hill M. C. Lin

Scheduling Scheme

  amax: an upper bound on relative acceleration
between any two points on any pair of objects.

  alin: relative absolute linear 	

  α: relative rotational accelerations 	

  ω: relative rotational velocities
  r: vector difference btw CoM of two bodies 	

  d: initial separation for two given objects

amax = | alin + α x r + ω x ω x r |	

vi = | vlin + ω x r | 	

  Estimated Time to collision:	

	

 	

 	

tc = { (vi

2 + 2 amax d)1/2 - vi } / amax

UNC Chapel Hill M. C. Lin

Collide System Architecture

Analysis &
Response

Sweep & Prune

Simulation
Exact
Collision
Detection

Collision

Transform Overlap

Parameters

UNC Chapel Hill M. C. Lin

Sweep and Prune

  Compute the axis-aligned bounding box
(fixed vs. dynamic) for each object

  Dimension Reduction by projecting boxes
onto each x, y, z- axis

  Sort the endpoints and find overlapping
intervals

  Possible collision -- only if projected intervals
overlap in all 3 dimensions

UNC Chapel Hill M. C. Lin

Sweep & Prune

b1 b2 e1 e2 b3 e3

b1

b2

e1
b3
e2

e3 T = 1

b1 b2 e1 e2 b3 e3

b3

b1

e3

b2

e1

e2

T = 2

UNC Chapel Hill M. C. Lin

Updating Bounding Boxes

 Coherence (greedy algorithm)

 Convexity properties (geometric
properties of convex polytopes)

 Nearly constant time, if the motion is
relatively “small”

UNC Chapel Hill M. C. Lin

Use of Sorting Methods

  Initial sort -- quick sort runs in O(m log m)
just as in any ordinary situation

  Updating -- insertion sort runs in O(m) due
to coherence. We sort an almost sorted
list from last stimulation step. In fact, we
look for “swap” of positions in all 3
dimension.

UNC Chapel Hill M. C. Lin

Implementation Issues

 Collision matrix -- basically
adjacency matrix

 Enlarge bounding volumes with
some tolerance threshold

 Quick start polyhedral collision test
-- using bucket sort & look-up table

