
CUDA: Introduction
Christian Trefftz / Greg Wolffe
Grand Valley State University

Supercomputing 2008
Education Program

(modifications by Jernej Barbic, 2008-2019)

2

Terms
Ø What is GPGPU?

l General-Purpose computing on a Graphics
Processing Unit

l Using graphic hardware for non-graphic
computations

Ø What is CUDA?
l Parallel computing platform and API by Nvidia
l Compute Unified Device Architecture
l Software architecture for managing data-parallel

programming
l Introduced in 2007; still actively updated

3

Motivation

4

Motivation

5

Motivation

6

CPU vs. GPU
Ø CPU

l Fast caches
l Branching adaptability
l High performance

Ø GPU
l Multiple ALUs
l Fast onboard memory
l High throughput on parallel tasks

• Executes program on each fragment/vertex

Ø CPUs are great for task parallelism
Ø GPUs are great for data parallelism

7

CPU vs. GPU - Hardware

Ø More transistors devoted to data processing

8

Traditional Graphics Pipeline

Vertex processing
ò

Rasterizer
ò

Fragment processing
ò

Renderer (textures)

9

Pixel / Thread Processing

10

GPU Architecture

11

Processing Element

Ø Processing element = thread processor

12

GPU Memory Architecture

Ø Registers
Ø Shared Memory
Ø Local Memory
Ø Global Memory

Cached:
Ø Constant Memory
Ø Texture Memory

Uncached:

13

Data-parallel Programming

Ø Think of the GPU as a massively-threaded
co-processor

Ø Write “kernel” functions that execute on
the device -- processing multiple data
elements in parallel

Ø Keep it busy! [massive threading
Ø Keep your data close! [local memory

14

Hardware Requirements
Ø CUDA-capable

video card
Ø Power supply
Ø Cooling
Ø PCI-Express

17

A Gentle Introduction to
CUDA Programming

18

Credits
Ø The code used in this presentation is based

on code available in:

l the Tutorial on CUDA in Dr. Dobbs Journal

l Andrew Bellenir’s code for matrix multiplication
l Igor Majdandzic’s code for Voronoi diagrams
l NVIDIA’s CUDA programming guide

19

Software Requirements/Tools

Ø CUDA device driver
Ø CUDA Toolkit (compiler, CUBLAS, CUFFT)
Ø CUDA Software Development Kit

l Emulator

Ø Occupancy calculator
Ø Visual profiler

Profiling:

20

To compute, we need to:
Ø Allocate memory for the computation

on the GPU (incl. variables)
Ø Provide input data
Ø Specify the computation to be performed
Ø Read the results from the GPU (output)

21

Initially:

CPU Memory GPU Card’s Memory

array

22

Allocate Memory in the GPU
card

Host’s Memory GPU Card’s Memory

array_darray

23

Copy content from the host’s memory to the
GPU card memory

Host’s Memory GPU Card’s Memory

array_darray

24

Execute code on the GPU

Host’s Memory GPU Card’s Memory

array_darray

GPU MPs

25

Copy results back to the host
memory

Host’s Memory GPU Card’s Memory

array_darray

26

The Kernel
Ø The code to be executed in the

stream processors on the GPU

Ø Simultaneous execution in
several (perhaps all) stream
processors on the GPU

Ø How is every instance of the
kernel going to know which
piece of data it is working on?

27

Grid and Block Size

l Grid size: The number of blocks
• Can be 1 or 2-dimensional array of blocks

l Each block is divided into threads
• Can be 1, 2, or 3-dimensional array of threads

28

Let’s look at a very simple example

Ø The code has been divided into two files:
l simple.c
l simple.cu

Ø simple.c is ordinary code in C
Ø It allocates an array of integers, initializes

it to values corresponding to the indices in
the array and prints the array.

Ø It calls a function that modifies the array
Ø The array is printed again.

29

simple.c
Ø

#include <stdio.h>
#define SIZEOFARRAY 64
extern void fillArray(int *a,int size);

/* The main program */
int main(int argc,char *argv[])
{
/* Declare the array that will be modified by the GPU */
int a[SIZEOFARRAY];
int i;
/* Initialize the array to 0s */
for(i=0;i < SIZEOFARRAY;i++) {
a[i]=0;

}
/* Print the initial array */
printf("Initial state of the array:\n");
for(i = 0;i < SIZEOFARRAY;i++) {

printf("%d ",a[i]);
}
printf("\n");
/* Call the function that will in turn call the function in the GPU that will fill
the array */
fillArray(a,SIZEOFARRAY);
/* Now print the array after calling fillArray */
printf("Final state of the array:\n");
for(i = 0;i < SIZEOFARRAY;i++) {
printf("%d ",a[i]);

}
printf("\n");
return 0;
}

30

simple.cu

Ø simple.cu contains two functions
l fillArray(): A function that will be executed on

the host and which takes care of:
• Allocating variables in the global GPU memory
• Copying the array from the host to the GPU memory
• Setting the grid and block sizes
• Invoking the kernel that is executed on the GPU
• Copying the values back to the host memory
• Freeing the GPU memory

31

fillArray (part 1)
#define BLOCK_SIZE 32
extern "C" void fillArray(int *array, int arraySize)
{

int * array_d;
cudaError_t result;

/* cudaMalloc allocates space in GPU memory */
result =
cudaMalloc((void**)&array_d,sizeof(int)*arraySize);

/* copy the CPU array into the GPU array_d */
result = cudaMemcpy(array_d,array,sizeof(int)*arraySize,

cudaMemcpyHostToDevice);

32

fillArray (part 2)
/* Indicate block size */
dim3 dimblock(BLOCK_SIZE);
/* Indicate grid size */
dim3 dimgrid(arraySize / BLOCK_SIZE);

/* Call the kernel */
cu_fillArray<<<dimgrid,dimblock>>>(array_d);

/* Copy the results from GPU back to CPU memory */
result =
cudaMemcpy(array,array_d,sizeof(int)*arraySize,cudaMemcpyDevice
ToHost);

/* Release the GPU memory */
cudaFree(array_d);

}

33

simple.cu (cont.)
Ø The other function in simple.cu is cu_fillArray():

l This is the GPU kernel

l Identified by the keyword: __global__

l Built-in variables:
• blockIdx.x : block index within the grid
• threadIdx.x: thread index within the block

34

cu_fillArray
__global__ void cu_fillArray(int * array_d)
{

int x;
x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
array_d[x] = x;

}

__global__ void cu_addIntegers(int * array_d1, int * array_d2)
{

int x;
x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
array_d1[x] += array_d2[x];

}

35

To compile:

Ø nvcc simple.c simple.cu –o simple
Ø The compiler generates the code for both

the host and the GPU
Ø Demo on cuda.littlefe.net …

37

In the GPU:

Processing Elements

Array Elements

Thread
1

Thread
2

Thread
3

Thread
0

Thread
1

Thread
2

Thread
3

Thread
0

Block 0 Block 1

41

Another Example: saxpy
Ø SAXPY (Scalar Alpha X Plus Y)

l A common operation in linear algebra
Ø CUDA: loop iteration ð thread

42

Traditional Sequential Code
void saxpy_serial(int n,

float alpha,
float *x,
float *y)

{
for(int i = 0;i < n;i++)

y[i] = alpha*x[i] + y[i];
}

43

CUDA Code
__global__ void saxpy_parallel(int n,

float alpha,
float *x,
float *y) {

int i = blockIdx.x*blockDim.x+threadIdx.x;
if (i<n)

y[i] = alpha*x[i] + y[i];
}

44

“Warps”
Ø Each block is split into SIMD groups of threads

called "warps".

Ø Each warp contains the same number of threads,
called the "warp size”

45

Block 1

w
ar

p
1

w
ar

p
2

w
ar

p
3

threads

Block 2

w
ar

p
1

w
ar

p
2

w
ar

p
3

Block 3

w
ar

p
1

w
ar

p
2

w
ar

p
3

Block 4

w
ar

p
1

w
ar

p
2

w
ar

p
3

Multi-processor 1

46

Keeping multiprocessors in mind…
Ø Each multiprocessor can process multiple blocks at a

time.

Ø How many depends on the number of registers per
thread and how much shared memory per block is
required by a given kernel.

Ø If a block is too large, it will not fit into the resources of
an MP.

47

Performance Tip: Block Size

Ø Critical for performance
Ø Recommended value is 192 or 256
Ø Maximum value is 512
Ø Should be a multiple of 32 since this is the warp

size for Series 8 GPUs and thus the native
execution size for multiprocessors

Ø Limited by number of registers on the MP
Ø Series 8 GPU MPs have 8192 registers which

are shared between all the threads on an MP

48

Performance Tip:
Grid Size (number of blocks)

Ø Recommended value is at least 100, but 1000 would
scale for many generations of hardware

Ø Actual value depends on problem size

Ø It should be a multiple of the number of MPs for an even
distribution of work (not a requirement though)

Ø Example: 24 blocks
l Grid will work efficiently on Series 8 (12 MPs), but it will waste

resources on new GPUs with 32MPs

49

Example: Tesla P100

Ø Launched in 2016

Ø “Pascal” architecture (successors: Volta, Turing)

Ø Double-precision performance: 4.7 TeraFLOPS

Ø Single-precision performance: 9.3 TeraFLOPS

Ø GPU Memory: 16 GB

50

Example: Tesla P100

Ø Number of Multiprocessors (MPs): 56
Ø Number of Cuda Cores per MP: 64
Ø Total number of Cuda Cores: 3584
Ø #Cuda Cores = #number of floating point

instructions that can be processed per cycle
Ø MPs can run multiple threads per core

simultaneously (similar to hyperthreading on CPU)
Ø Hence, #threads can be larger than #cores

51

Memory Alignment

Ø Memory access faster if data aligned at 64
byte boundaries

Ø Hence, allocate 2D arrays so that every
row starts at a 64-byte boundary

Ø Tedious for a programmer

52

Allocating 2D arrays with “pitch”

Ø CUDA offers special versions of:

l Memory allocation of 2D arrays so that every row
is padded (if necessary): cudaMallocPitch()

l Memory copy operations that take into account the
pitch: cudaMemcpy2D()

53

Pitch

Rows

Columns

Pitch

Padding

60

Dividing the work by blocks:

Rows

Columns

Pitch

Block 0

Block 1

Block 2

65

Watchdog timer
Ø OS may force programs using the GPU to time out if

running too long

Ø Exceeding the limit can cause CUDA program
failure.

Ø Possible solution: run CUDA on a GPU that is NOT
attached to a display.

66

Resources on line

Ø http://www.acmqueue.org/modules.php?name=

Content&pa=showpage&pid=532

Ø http://www.ddj.com/hpc-high-performance-

computing/207200659

Ø http://www.nvidia.com/object/cuda_home.html#

Ø http://www.nvidia.com/object/cuda_learn.html

Ø “Computation of Voronoi diagrams using a

graphics processing unit” by Igor Majdandzic et

al. available through IEEE Digital Library, DOI:

10.1109/EIT.2008.4554342

http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=532
http://www.ddj.com/hpc-high-performance-computing/207200659
http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_learn.html

