CUDA: Introduction

Christian Trefftz / Greg Wolffe Grand Valley State University

> Supercomputing 2008 Education Program

(modifications by Jernej Barbic, 2008-2019)

Terms

> What is GPGPU?

- General-Purpose computing on a Graphics Processing Unit
- Using graphic hardware for non-graphic computations

> What is CUDA?

- Parallel computing platform and API by Nvidia
- Compute Unified Device Architecture
- Software architecture for managing data-parallel programming
- Introduced in 2007; still actively updated

Motivation

3

Motivation

Motivation

CPU vs. GPU

> CPU

- Fast caches
- Branching adaptability
- High performance
- > GPU
 - Multiple ALUs
 - Fast onboard memory
 - High throughput on parallel tasks
 - Executes program on each fragment/vertex
- CPUs are great for *task* parallelism
 GPUs are great for *data* parallelism

CPU vs. GPU - Hardware

More transistors devoted to data processing

Traditional Graphics Pipeline

Vertex processing Ŷ Rasterizer Ŷ Fragment processing Ŷ Renderer (textures)

Pixel / Thread Processing

GPU Architecture

Processing Element

Processing element = thread processor

GPU Memory Architecture

Uncached:

> Registers
> Shared Memory
> Local Memory
> Global Memory

Cached:

Constant Memory
Texture Memory

Data-parallel Programming

- Think of the GPU as a massively-threaded co-processor
- Write "kernel" functions that execute on the device -- processing multiple data elements in parallel

≻ Keep it busy! ⇒ massive threading
 ≻ Keep your data close! ⇒ local memory

Hardware Requirements

> CUDA-capable video card
 > Power supply
 > Cooling
 > PCI-Express

A Gentle Introduction to CUDA Programming

Credits

The code used in this presentation is based on code available in:

the Tutorial on CUDA in Dr. Dobbs Journal

- Andrew Bellenir's code for matrix multiplication
- Igor Majdandzic's code for Voronoi diagrams
- NVIDIA's CUDA programming guide

Software Requirements/Tools

CUDA device driver
 CUDA Toolkit (compiler, CUBLAS, CUFFT)
 CUDA Software Development Kit

 Emulator

Profiling:
Occupancy calculator
Visual profiler

To compute, we need to:

- Allocate memory for the computation on the GPU (incl. variables)
- Provide input data
- Specify the <u>computation</u> to be performed
- <u>Read</u> the results from the GPU (output)

Initially:

GPU Card's Memory

Allocate Memory in the GPU card

Copy content from the host's memory to the GPU card memory

Execute code on the GPU

Copy results back to the host memory

The Kernel

- The code to be executed in the stream processors on the GPU
- Simultaneous execution in several (perhaps all) stream processors on the GPU
- How is every instance of the kernel going to know which piece of data it is working on?

Grid and Block Size

Grid size: The number of blocks
 Can be 1 or 2-dimensional array of blocks

Each block is divided into threads
 Can be 1, 2, or 3-dimensional array of threads

Let's look at a very simple example

> The code has been divided into two files:

- simple.c
- simple.cu
- > simple.c is ordinary code in C

It allocates an array of integers, initializes it to values corresponding to the indices in the array and prints the array.

It calls a function that modifies the array
 The array is printed again.

simple.c

```
#include <stdio.h>
#define SIZEOFARRAY 64
extern void fillArray(int *a, int size);
/* The main program */
int main(int argc, char *argv[])
/* Declare the array that will be modified by the GPU */
int a[SIZEOFARRAY];
int i;
/* Initialize the array to 0s */
 for(i=0;i < SIZEOFARRAY;i++) {</pre>
   a[i]=0;
 /* Print the initial array */
printf("Initial state of the array:\n");
for (i = 0; i < SIZEOFARRAY; i++) {
   printf("%d ",a[i]);
printf("n");
/* Call the function that will in turn call the function in the GPU that will fill
the array */
fillArray(a, SIZEOFARRAY);
/* Now print the array after calling fillArray */
printf("Final state of the array:\n");
 for(i = 0;i < SIZEOFARRAY;i++) {</pre>
   printf("%d ",a[i]);
 printf("\n");
 return 0;
```

simple.cu

> simple.cu contains two functions

- fillArray(): A function that will be executed on the host and which takes care of:
 - Allocating variables in the global GPU memory
 - Copying the array from the host to the GPU memory
 - Setting the grid and block sizes
 - Invoking the kernel that is executed on the GPU
 - Copying the values back to the host memory
 - Freeing the GPU memory

fillArray (part 1)

#define BLOCK_SIZE 32
extern "C" void fillArray(int *array, int arraySize)
{
 int * array_d;

cudaError_t result;

/* cudaMalloc allocates space in GPU memory */
result =
cudaMalloc((void**)&array d,sizeof(int)*arraySize);

fillArray (part 2)

/* Indicate block size */
dim3 dimblock(BLOCK_SIZE);
/* Indicate grid size */
dim3 dimgrid(arraySize / BLOCK SIZE);

/* Call the kernel */
cu fillArray<<<dimgrid,dimblock>>>(array_d);

/* Copy the results from GPU back to CPU memory */
result =
cudaMemcpy(array,array_d,sizeof(int)*arraySize,cudaMemcpyDevice
ToHost);

/* Release the GPU memory */
cudaFree(array d);

simple.cu (cont.)

> The other function in simple.cu is cu_fillArray():

This is the GPU kernel

Identified by the keyword: ___global___

• Built-in variables:

blockldx.x : block index within the grid

• threadIdx.x: thread index within the block

cu_fillArray

```
__global__ void cu_fillArray(int * array_d)
{
    int x;
    x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    array_d[x] = x;
}
__global__ void cu_addIntegers(int * array_d1, int * array_d2)
{
    int x;
    x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    array_d1[x] += array_d2[x];
}
```

To compile:

 nvcc simple.c simple.cu –o simple
 The compiler generates the code for both the host and the GPU
 Dome on oude littlefe pet

Demo on cuda.littlefe.net ...

In the GPU:

Processing Elements

Another Example: saxpy

SAXPY (Scalar Alpha X Plus Y)
 A common operation in linear algebra
 CUDA: loop iteration

 thread

Traditional Sequential Code

void saxpy_serial(int n,
 float alpha,
 float *x,
 float *y)

for(int i = 0; i < n; i++)
y[i] = alpha*x[i] + y[i];</pre>

CUDA Code

"Warps"

Each block is split into SIMD groups of threads called "warps".

Each warp contains the same number of threads, called the "warp size"

Multi-processor 1

Keeping multiprocessors in mind...

- Each multiprocessor can process multiple blocks at a time.
- How many depends on the number of registers per thread and how much shared memory per block is required by a given kernel.
- If a block is too large, it will not fit into the resources of an MP.

Performance Tip: Block Size

- Critical for performance
- Recommended value is 192 or 256
- Maximum value is 512
- Should be a multiple of 32 since this is the warp size for Series 8 GPUs and thus the native execution size for multiprocessors

Limited by number of registers on the MP

Series 8 GPU MPs have 8192 registers which are shared between all the threads on an MP

Performance Tip: Grid Size (number of blocks)

Recommended value is at least 100, but 1000 would scale for many generations of hardware

Actual value depends on problem size

It should be a multiple of the number of MPs for an even distribution of work (not a requirement though)

Example: 24 blocks

 Grid will work efficiently on Series 8 (12 MPs), but it will waste resources on new GPUs with 32MPs

Example: Tesla P100

- Launched in 2016
- "Pascal" architecture (successors: Volta, Turing)
- Double-precision performance: 4.7 TeraFLOPS
- Single-precision performance: 9.3 TeraFLOPS
- > GPU Memory: 16 GB

Example: Tesla P100

- Number of Multiprocessors (MPs): 56
- Number of Cuda Cores per MP: 64
- Total number of Cuda Cores: 3584
- #Cuda Cores = #number of floating point instructions that can be processed per cycle
- MPs can run multiple threads per core simultaneously (similar to hyperthreading on CPU)
- Hence, #threads can be larger than #cores

Memory Alignment

Memory access faster if data aligned at 64 byte boundaries

Hence, allocate 2D arrays so that every row starts at a 64-byte boundary

> Tedious for a programmer

Allocating 2D arrays with "pitch"

> CUDA offers special versions of:

 Memory allocation of 2D arrays so that every row is padded (if necessary): cudaMallocPitch()

Memory copy operations that take into account the pitch: cudaMemcpy2D()

Dividing the work by blocks:

Watchdog timer

Solving to the Solving the Solving the Solving to the Solving t

Exceeding the limit can cause CUDA program failure.

Possible solution: run CUDA on a GPU that is NOT attached to a display.

Resources on line

- http://www.acmqueue.org/modules.php?name= Content&pa=showpage&pid=532
- http://www.ddj.com/hpc-high-performancecomputing/207200659
- http://www.nvidia.com/object/cuda_home.html#
- http://www.nvidia.com/object/cuda_learn.html

Computation of Voronoi diagrams using a graphics processing unit" by Igor Majdandzic et al. available through IEEE Digital Library, DOI: 10.1109/EIT.2008.4554342