
1 

1 

The Jello Cube 
Assignment 1, CSCI 520 

Jernej Barbic, USC 
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Undeformed cube 

The jello cube 

Deformed cube 

•  The jello cube is elastic, 
•  Can be bent, stretched, squeezed, …, 
•  Without external forces, it eventually 

restores to the original shape. 
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Mass-Spring System 

•  Several mass points 
•  Connected to each other by springs 
•  Springs expand and stretch, exerting force on the 

mass points 
•  Very often used to simulate cloth 
•  Examples: 

 A 2-particle spring system 
 Another 2-particle example 
 Cloth animation example 

4 

Newton’s Laws 
•  Newton’s 2nd law: 

•  Newton’s 3rd law: If object A exerts a force F on 
object B, then object B is at the same time exerting 
force -F on A. 

•  Tells you how to compute acceleration, given the 
force and mass 
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Single spring 

•  Obeys the Hook’s law: 
  F = k (x - x0) 

•  x0 = rest length 
•  k = spring elasticity 

(aka stiffness) 
•  For x<x0, spring 

wants to extend 
•  For x>x0, spring  

wants to contract 
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Hook’s law in 3D 

•  Assume A and B two mass points connected with 
a spring. 

•  Let L be the vector pointing from B to A 
•  Let R be the spring rest length 
•  Then, the elastic force exerted on A is: 
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Damping 
•  Springs are not completely elastic 
•  They absorb some of the energy and tend to 

decrease the velocity of the mass points attached 
to them 

•  Damping force depends on the velocity: 

•  kd = damping coefficient  
•  kd different than kHook !! 
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Damping in 3D 
•  Assume A and B two mass points connected with 

a spring. 
•  Let L be the vector pointing from B to A 
•  Then, the damping force exerted on A is: 

•  Here vA and vB are velocities of points A and B 
•  Damping force always OPPOSES the motion 
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A network of springs 

•  Every mass point connected to 
some other points by springs 

•  Springs exert forces  
on mass points 

–  Hook’s force 
–  Damping force 

•  Other forces 
–  External force field 

»  Gravity 
»  Electrical or magnetic force field 

–  Collision force 

10 

How to organize the network 
(for jello cube) 

•  To obtain stability, must organize the network of 
springs in some clever way 

•  Jello cube is a 8x8x8 mass point network 
•  512 discrete points 
•  Must somehow connect them with springs 

Basic network Stable network Network out  
of control 
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Solution: 
Structural, Shear and Bend Springs 

•  There will be three 
types of springs: 

–  Structural 
–  Shear 
–  Bend 

•  Each has its  
own function 
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Structural springs 
•  Connect every node to its 6 direct neighbours 
•  Node (i,j,k) connected to 

–  (i+1,j,k), (i-1,j,k), (i,j-1,k), (i,j+1,k), (i,j,k-1), (i,j,k+1) 
(for surface nodes, some of these neighbors might not exists) 

•  Structural springs establish the basic structure 
of the jello cube 

•  The picture shows structural 
springs for the jello cube. 
Only springs connecting 
two surface vertices are 
shown. 
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Shear springs 

•  Disallow excessive shearing 
•  Prevent the cube from distorting 
•  Every node (i,j,k)  

connected to its diagonal  
neighbors 

•  Structural springs = white 
•  Shear springs = red 

A 3D cube 
(if you can’t see it  
immediately, keep trying) 

Shear spring (red) 
resists stretching 
and thus prevents 
shearing 
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Bend springs 
•  Prevent the cube from folding over 
•  Every node connected 

to its second neighbor 
in every direction 
(6 connections per node, 
unless surface node) 

•  white=structural springs 
•  yellow=bend springs 

(shown for a single node 
only) 

Bend spring (yellow) 
resists contracting 
and thus prevents 
bending 
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External force field 

•  If there is an external force field, add that force to 
the sum of all the forces on a mass point 

•  There is one such equation 
 for every mass point and 
 for every moment in time 
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Collision detection 
•  The movement of the jello cube is limited to a 

bounding box 
•  Collision detection easy: 

–  Check all the vertices if any of them is outside the box 

•  Inclined plane: 
–  Equation: 

–  Initially, all points on the same side of the plane 
–  F(x,y,z)>0 on one side of the plane and F(x,y,z)<0 on the other 
–  Can check all the vertices for this condition 
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Collision response 

•  When collision happens, must perform some action 
to prevent the object penetrating even deeper 

•  Object should bounce away from the colliding object 
•  Some energy is usually lost during the collision 
•  Several ways to handle collision response 
•  We will use the penalty method 
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The penalty method 
•  When collision happens, put an artificial collision 

spring at the point of collision, which will push 
the object backwards and away  
from the colliding object 

•  Collision springs have elasticity and damping, 
just like ordinary springs 

v 
F 

Collision 
 spring 

Boundary of  
colliding object 
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Penalty force 

F 

Collision 
 spring 

Boundary of  
colliding object 

•  Direction is normal to the 
contact surface 

•  Magnitude is proportional to 
the amount of penetration 

•  Collision spring rest length 
is zero 
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Integrators 
•  Network of mass points and springs 
•  Hook’s law, damping law and Newton’s 2nd law 

give acceleration of every mass point  
at any given time 

•  F = ma 
–  Hook’s law and damping provide F 
–  ‘m’ is point mass 
–  The value for a follows from F=ma 

•  Now, we know acceleration at any given time for 
any point 

•  Want to compute the actual motion 
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Integrators (contd.) 
•  The equations of motion: 

•  x = point position, v = point velocity, a = point acceleration 
•  They describe the movement of any single mass point 
•  Fhook=sum of all Hook forces on a mass point 
•  Fdamping = sum of all damping forces on a mass point 
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Integrators (contd.) 

•  When we put these equations together for all the 
mass points, we obtain a system of ordinary 
differential equations. 

•  In general, impossible to solve analytically 
•  Must solve numerically 
•  Methods to solve such systems numerically are 

called integrators 
•  Most widely used: 

–  Euler 
–  Runge-Kutta 2nd order (aka the midpoint method) (RK2) 
–  Runge-Kutta 4th order (RK4) 
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Integrator design issues 

•  Numerical stability 
–  If time step too big, method “explodes” 
–  t = 0.001 is a good starting choice for the assignment 
–  Euler much more unstable than RK2 or RK4 

»  Requires smaller time-step, but is simple and hence fast 
–  Euler rarely used in practice 

•  Numerical accuracy 
–  Smaller time steps means more stability and accuracy 
–  But also means more computation 

•  Computational cost 
–  Tradeoff: accuracy vs computation time 
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Integrators (contd.) 

•  RK4 is often the method of choice 
•  RK4 very  popular for engineering applications 
•  The time step should be inversely proportional to the 

square root of the elasticity k [Courant condition] 
•  For the assignment, we provide the integrator 

routines (Euler, RK4)  
–  void Euler(struct world * jello); 
–  void RK4(struct world * jello); 
–  Calls to there routines make the simulation progress one time-step 

further.  
–  State of the simulation stored in ‘jello’ and automatically updated 



5 

25 

Tips 
•  Use double precision for all calculations (double) 
•  Do not overstretch the z-buffer 

–  It has finite precision 
–  Ok: gluPerspective(90.0,1.0,0.01,1000.0); 
–  Bad: gluPerspective(90.0,1.0,0.0001,100000.0); 

•  Choosing the right elasticity and damping 
parameters is an art 

–  Trial and error 
–  For a start, can set the ordinary and collision parameters the 

same 

•  Read the webpage for updates 


